
SCRIPTING LANGUAGES M.TECH. II YEAR I SEM (R18)

1

SCRIPTING LANGUAGE

[R20DCS51]

LECTURE NOTES

MTECH II YEAR –I SEM (R18)

(2021-2022)

DEPARTMENT OF

COMPUTER SCIENCE AND ENGINEERING

MALLA REDDY COLLEGE OF ENGINEERING &

TECHNOLOGY

(Autonomous Institution – UGC, Govt. of India)

Recognized under 2(f) and 12 (B) of UGC ACT 1956

(Affiliated to JNTUH, Hyderabad, Approved by AICTE - Accredited by NBA & NAAC – ‘A’ Grade - ISO 9001:2015 Certified)

Maisammaguda, Dhulapally (Post Via. Hakimpet), Secunderabad – 500100, Telangana State, India

SCRIPTING LANGUAGES M.TECH. II YEAR I SEM (R18)

2

 (R20DCS51) SCRIPTINGLANGUAGES

(OPEN ELECTIVE I)

Objectives: The course demonstrates an in depth understanding of the tools and the scripting

languages necessary for design and development of applications dealing with Bio-information/

Biodata. The instructor is advised to discuss examples in the context of Bio-data/ Bio-information

application development.

UNIT I

Introduction to PERL and Scripting Scripts and Programs: Origin of Scripting , Scripting

Today, Characteristics of Scripting Languages, Web Scripting, and the universe of Scripting

Languages.

PERL- Names and Values, Variables, Scalar Expressions, Control Structures, arrays, list, hashes,

strings, pattern and regular expressions, subroutines, advance perl - finer points of looping, pack

and unpack, filesystem, eval, data structures, packages, modules, objects, interfacing to the

operating system, Creating Internet ware applications, Dirty Hands Internet Programming, security

Issues.

UNIT II

PHP Basics- Features, Embedding PHP Code in your Web pages, Outputting the data to the

browser, Datatypes, Variables, Constants, expressions, string interpolation, control structures,

Function, Creating a Function, Function Libraries, Arrays, strings and Regular Expressions.

UNIT III

Advanced PHP Programming Php and Web Forms, Files, PHP Authentication and

Methodologies Hard Coded, File Based, Database Based, IP Based, Login Administration,

Uploading Files with PHP, Sending Email using PHP, PHP Encryption Functions, the Mcrypt

package, Building Web sites for the World – Translating Websites- Updating Web sites Scripts,

Creating the Localization Repository, Translating Files, text, Generate Binary Files, Set the desired

language within your scripts, Localizing Dates, Numbers and Times.

UNIT IV

TCL Structure, syntax, Variables and Data in TCL, Control Flow, Data Structures, input/output,

procedures, strings, patterns, files, Advance TCL- eval, source, exec and up level commands, Name

spaces, trapping errors, event driven programs, making applications internet aware, Nuts and Bolts

Internet Programming, Security Issues, C Interface. Tk- Visual Tool Kits, Fundamental Concepts of

Tk, Tk by example, Events and Binding , Perl-Tk.

SCRIPTING LANGUAGES M.TECH. II YEAR I SEM (R18)

3

UNIT V

Python Introduction to Python language, python-syntax, statements, functions, Built-in-functions

and Methods, Modules in python, Exception Handling, Integrated Web Applications in Python –

Building Small, Efficient Python Web Systems, Web Application Framework.

TEXT BOOKS:

1. The World of Scripting Languages, David Barron, Wiley Publications.

2. Python Web Programming, Steve Holden and David Beazley, New Riders Publications.

3. Beginning PHP and MySQL, 3rd Edition, Jason Gilmore, Apress Publications (Dreamtech)

REFERENCE BOOKS:

1. Open Source Web Development with LAMP using Linux, Apache, MySQL, Perl and PHP, J.Lee

and B.Ware (Addison Wesley) Pearson Education.

2. Programming Python, M.Lutz, SPD.

3. PHP 6 Fast and Easy Web Development, Julie Meloni and Matt Telles, Cengage Learning

Publications.

4. PHP 5.1,I.Bayross and S.Shah, The X Team, SPD.

5. Core Python Programming, Chun, Pearson Education.

6. Guide to Programming with Python, M.Dawson, Cengage Learning.

7. Perl by Example, E.Quigley, Pearson Education.

8. Programming Perl, Larry Wall, T.Christiansen and J.Orwant, O’Reilly, SPD.

9. Tcl and the Tk Tool kit, Ousterhout, Pearson Education.

10. PHP and MySQL by Example, E.Quigley, Prentice Hall(Pearson).

11. Perl Power, J.P.Flynt, Cengage Learning.

12. PHP Programming solutions, V.Vaswani, TMH.

SCRIPTING LANGUAGES M.TECH. II YEAR I SEM (R18)

4

INDEX

UNIT

NO

TOPIC PAGE

NO

I Introduction To PERL And

Scripting Scripts And

Programs

5-11

Perl 11-57

II Php Basics 58-110

III Advanced Php Programming

Php
111-139

IV Tcl Structure 140-186

Tk- Visual Tool Kits 186-197

V Python Introduction To Python

Language

198-222

SCRIPTING LANGUAGES M.TECH. II YEAR I SEM (R18)

5

UNIT I

Introduction to PERL and Scripting Scripts and Programs: Origin of Scripting , Scripting

Today, Characteristics of Scripting Languages, Web Scripting, and the universe of Scripting

Languages.

PERL- Names and Values, Variables, Scalar Expressions, Control Structures, arrays, list, hashes,

strings, pattern and regular expressions, subroutines, advance perl - finer points of looping, pack

and unpack, filesystem, eval, data structures, packages, modules, objects, interfacing to the

operating system, Creating Internet ware applications, Dirty Hands Internet Programming, security

Issues.

Scripts and programs

Scripting is the action of typing scripts using a scripting language, distinguishing neatly between

programs, which are written in conventional programming language such as C,C++,java, and

scripts, which are written using a different kind of language.

We could reasonably argue that the use of scripting languages is just another kind of

programming. Scripting languages are used for is qualitatively different from conventional

programming languages like C++ and Ada address the problem of developing large applications

from the ground up, employing a team of professional programmers, starting from well-defined

specifications, and meeting specified performance constraints.

Scripting languages, on other hand, address different problems:

 Building applications from ‘off the shelf’ components

 Controlling applications that have a programmable interface

 Writing programs where speed of development is more important

than run-time efficiency.

The most important difference is that scripting languages incorporate features that enhance the

productivity of the user in one way or another, making them accessible to people who would not

normally describe themselves as programmers, their primary employment being in some other

capacity. Scripting languages make programmers of us all, to some extent.

Origin of scripting

The use of the word ‘script’ in a computing context dates back to the early 1970s,when

the originators of the UNIX operating system create the term ‘shell script’ for sequence of

commands that were to be read from a file and follow in sequence as if they had been typed in at

SCRIPTING LANGUAGES M.TECH. II YEAR I SEM (R18)

6

the keyword. e.g. an ‘AWKscript’, a ‘perl script’ etc.. the name ‘script ‘ being used for a text file

that was intended to be executed directly rather than being compiled to a different form of file

prior to execution.

Other early occurrences of the term ‘script’ can be found. For example, in a DOS- based

system, use of a dial-up connection to a remote system required a communication package that

used proprietary language to write scripts to automate the sequence of operations required to

establish a connection to a remote system. Note that if we regard a scripts as a sequence of

commands to control an application or a device, a configuration file such as a UNIX ‘make file’

could be regard as a script.

However, scripts only become interesting when they have the added value that

comes from using programming concepts such as loops and branches.

SCRIPTING TODAY

SCRIPTING IS USED WITH 3 DIFFRENT MEANINGS

1. A new style of programming which allows applications to be developed much faster than

traditional methods allow, and makes it possible for applications to evolve rapidly to meet

changing user requirements. This style of programming frequently uses a scripting language to

interconnect ‘off the shelf ‘ components that are themselves written in conventional language.

Applications built in this way are called ‘glue applications’ ,and the language is called a ‘glue

language’.

A glue language is a programming language i,e an interpreted scripting language and is designed

or suited for writing glue code – code is to connect software parts. They are especially useful for

writing and maintaining:

 Custom commands for a command shell

 Smaller programs than those that are better implemented in a compiled language.

 "Wrapper" programs for executables, like a batch file that moves or manipulates files and

does other things with the operating system before or after running an application like a word

processor, spreadsheet, data base, assembler, compiler, etc.

 Scripts that may change

 Rapid prototypes of a solution eventually implemented in another, usually compiled,

https://en.wikipedia.org/wiki/Rapid_application_development

SCRIPTING LANGUAGES M.TECH. II YEAR I SEM (R18)

7

 language.

Glue language examples:

AppleScript

 ColdFusion DCL

Embeddable Common

Lisp ecl

Erlan

g JCL

JScript and JavaScript

Lua

m4

Perl

PH

P

Pure

Python

Rebol

Rexx

Ruby

Scheme

Tcl

Unix Shell

scripts (ksh, csh,bash, sh and

others)

VBScript

Work Flow Language

Windows PowerShell

XSLT

2. Using a scripting language to ‘manipulate, customize and automate the facilities of an existing

system’, as the ECMA Script definition puts it. Here the script is used to control an application that

provides a programmable interface: this may be an API, though more commonly the application is

constructed from a collection of objects whose properties and methods are exposed to the scripting

language. Example: use of Visual Basic for applications to control the applications in the Microsoft

Office Suite.

3. Using a scripting language with its rich functionality and ease of use as an alternate to a

conventional language for general programming tasks, particularly system programming and

administration. Examples: are UNIX system administrators have for a long time used scripting

languages for system maintenance tasks, and administrators of WINDOWS NT systems are

adopting a scripting language, PERL for their work.

Characteristics of scripting languages

These are some properties of scripting languages which differentiate SL from programming

languages.

 Integrated compile and run: SL’s are usually characterized as interpreted languages, but this

is just an oversimplification. They operate on an immediate execution, without a need to issue a

separate command to compile the program and then to run the resulting object file, and without the

need to link extensive libraries into the object code. This is done automatically. A few SL’S are

https://en.wikipedia.org/wiki/AppleScript
https://en.wikipedia.org/wiki/ColdFusion
https://en.wikipedia.org/wiki/DIGITAL_Command_Language
https://en.wikipedia.org/wiki/Embeddable_Common_Lisp
https://en.wikipedia.org/wiki/Embeddable_Common_Lisp
https://en.wikipedia.org/wiki/ECL_programming_language
https://en.wikipedia.org/wiki/Erlang_(programming_language)
https://en.wikipedia.org/wiki/Erlang_(programming_language)
https://en.wikipedia.org/wiki/Job_Control_Language
https://en.wikipedia.org/wiki/JScript
https://en.wikipedia.org/wiki/JavaScript
https://en.wikipedia.org/wiki/Lua_(programming_language)
https://en.wikipedia.org/wiki/M4_(computer_language)
https://en.wikipedia.org/wiki/Perl
https://en.wikipedia.org/wiki/PHP
https://en.wikipedia.org/wiki/PHP
https://en.wikipedia.org/wiki/Pure_(programming_language)
https://en.wikipedia.org/wiki/Python_(programming_language)
https://en.wikipedia.org/wiki/Rebol
https://en.wikipedia.org/wiki/Rexx
https://en.wikipedia.org/wiki/Ruby_(programming_language)
https://en.wikipedia.org/wiki/Scheme_(programming_language)
https://en.wikipedia.org/wiki/Tcl
https://en.wikipedia.org/wiki/Unix
https://en.wikipedia.org/wiki/Unix
https://en.wikipedia.org/wiki/Shell_script
https://en.wikipedia.org/wiki/Korn_shell
https://en.wikipedia.org/wiki/C_shell
https://en.wikipedia.org/wiki/C_shell
https://en.wikipedia.org/wiki/Bourne_shell
https://en.wikipedia.org/wiki/VBScript
https://en.wikipedia.org/wiki/Work_Flow_Language
https://en.wikipedia.org/wiki/Windows_PowerShell
https://en.wikipedia.org/wiki/XSLT

SCRIPTING LANGUAGES M.TECH. II YEAR I SEM (R18)

8

indeed implemented as strict interpreters.

 Low overheads and ease of use:

Variables can be declared by using the number of different data types is usually

limited everything is a string by context it will be converted as number(vice versa).

Number of data structures is limited(arrays)

 Enhanced functionality: SL’s usually have enhanced functionality in some areas. For

example, most languages provide string manipulation based on the use of regular

expressions, while other languages provide easy access to low-level operating system

facilities, or to the API, or object exported by an application.

 Efficiency is not an issue: ease of use is achieved at the expense of efficiency because

efficiency is not an issue in the applications for which SL’S are designed.

 A scripting language is usually interpreted from source code or bytecode. By contrast,

the software environment the scripts are written for is typically written in a compiled

language and distributed in machine code form.

 Scripting languages may be designed for use by end users of a program – end-user

development – or maybe only for internal use by developers, so they can write portions of

the program in the scripting language.

 Scripting languages typically use abstraction, a form of information hiding, to spare

users the details of internal variable types, data storage, and memory management.

Scripts are often created or modified by the person executing them, but they are also

often distributed, such as when large portions of games are written in a scripting

language.

The characteristics of ease of use, particularly the lack of an explicit compile-link-

load sequence, are sometimes taken as the sole definition of a scripting language.

Users for Scripting Languages

Users are classified into two types

1. Modern applications

2. Traditional users

Modern applications of scripting languages

SCRIPTING LANGUAGES M.TECH. II YEAR I SEM (R18)

9

Visual scripting: A collection of visual objects is used to construct a graphical interface. This

process of constructing a graphical interface is known as visual scripting. the properties of visual

objects include text on button, background and foreground colors. These properties of objects can

be changed by writing a program in a suitable language. The outstanding visual scripting system

is visual basic. It is used to develop new applications. Visual scripting is also used to create

enhanced web pages.

1. Scripting components: In scripting languages, we use the idea to control the scriptable

objects belonging to scripting architecture. Microsoft's visual basic and excel are the first

applications that used the concept of scriptable objects. To support all the applications of

Microsoft the concept of scriptable objects was developed.3.Web scripting web scripting is

classified into three forms they are processing forms, dynamic web pages, dynamically

generating HTML.

Applications of traditional scripting languages are:

1. system administration,

2. experimental programming,

3. controlling applications.

Application areas :

Four main usage areas for scripting languages:

1. Command scripting languages

2.Application scripting languages

 3.Markup language

4. Universal scripting languages

1. Command scripting languages are the oldest class of scripting expressions. They appeared

in 1960 when a need for programs and tasks control arises. The most known language from the

first generation of such type of languages is JCL (Job Control Language), created by IBM

OS/360 operating system. Examples of such languages are shell language, described above, and

also text-processing languages, such as sed and awk. These languages were one of the first to

directly include support for regular expression matching - a feature that later was included into

more general-purpose languages, such as Perl.

SCRIPTING LANGUAGES M.TECH. II YEAR I SEM (R18)

10

Web scripting

Web is the most fertile areas for the application of scripting languages. Web scripting

divides into three areas

a. processing forms

b. creating pages with enhanced visual effects and user interaction and

c. generating pages ’on the fly’ from material held in database.

Processing Web forms

In the original implementation of the web , when the form is submitted for processing, the

information entered by the user is encoded and sent to the server for processing by a CGI script

that generates an HTML page to be sent back to the Web browser. This processing requires

string manipulation to construct the HTML page that constitutes the replay, and may also

require system access , to run other processes and to establish network connections. Perl is also

a language that uses CGI scripting. Alternatively for processing the form with script running on

the server it possible to do some client –side processing within the browser to validate form data

before sending it to the server by using JavaScript, VBScript etc.

Dynamic Web pages

‘Dynamic HTML’ makes every component of a Web page (headings, anchors, tables etc.) a

scriptable object. This makes it possible to provide simple interaction with the user using scripts

written in JavaScript/Jscript or VBScript, which are interpreted by the browser.Microsoft’s

ActiveX technology allows the creation of pages with more elaborate user interaction by using

embedded visual objects called ActiveX controls. These controls are scriptable objects, and can

in fact be scripted in a variety languages. This can be scripted by using Perl scripting engine.

Dynamically generated HTML

Another form of dynamic Web page is one in which some or all of the HTML is generated by

scripts executed on the server. A common application of the technique is to construct pages

whose content is retrieved from a database. For example, Microsoft’s IIS web server implements

Active Server Pages (ASP), which incorporate scripts in Jscript or VBScript.

The universe of scripting languages

Scripting can be traditional or modern scripting, and Web scripting forms an important part of

modern scripting. Scripting universe contains multiple overlapping worlds

SCRIPTING LANGUAGES M.TECH. II YEAR I SEM (R18)

11

o The original UNIX world of traditional scripting using Perl

o The Microsoft world of Visual Basic and Active controls

o The world of VBA for scripting compound documents

o The world of client-side and server-side Web scripting

The overlap is complex, for example web scripting can be done in VBScript,

JavaScript/Jscript, Perl or Tcl. This universe has been enlarged as Perl and Tcl are used to

implement complex applications for large organizations e.g Tcl has been used to develop a

major banking system, and Perl has been used to implement an enterprise- wide document

management system for a leading aerospace company.

 Names and Values in Perl:

Like any other programming language, Perl manipulates variables which have a name (or

identifier) and a value: a value is assigned to a variable by an assignment statement of the form

name=value

;
Variable names resemble nouns in English, and like English, Perl distinguishes between singular

and plural nouns. A singular name is associated with a variable that holds a single item of data

(a scalar value), a plural name is associated with a variable that holds a collection of data items

(an array or hash).

A notable characteristic of Perl is that variable names start with a special character that denotes

the kind of thing that the name stands for - scalar data ($), array (@), hash (%), subroutine (&)

etc. The syntax also allows a name that consists of a single non- alphanumeric character after the

initial special character, eg. $$, $?; such names are usually reserved for the Perl system.

If we write an assignment, eg. j=j+1, the occurrence of j on the left denotes a storage location,

while the right-hand occurrence denotes the contents of the storage location. We sometimes refer

to these as the lvalue and rvalue of the variable: more precisely we are determining the meaning

of the identifier in a left-context or a right-context. In the assignment a[j] = a[j] + 1, both

occurrences of j are determined in a right-context, even though one of them appears on the left of

the assignment.

In conventional programming languages, new variables are introduced by a

declaration, which specifies the name of the new variable and also its type, which determines the

kind of value that can be stored in the variable and, by implication, the operations that can be

SCRIPTING LANGUAGES M.TECH. II YEAR I SEM (R18)

12

carried out on that variable.

Strings and numbers

In common with many scripting languages, Perl recognizes just two kinds of scalar

data: strings and numbers. There is no distinction between integer and real numbers as different

types. Perl is a dynamically typed language: the system keeps track of whether a variable

contains a numeric value or a string value, and the user doesn't have to worry about the

difference between strings and numbers since conversions between the two kinds of data are

done automatically as required by the context in which they are used.

Boolean values

All programming languages need some way of representing truth values and Perl is no

exception. Since scalar values are either numbers or strings, some convention is needed for

representing Boolean values, and Perl adopts the simple rule that numeric zero, "0" and the

empty string (" ") mean false, and anything else means true.

Numeric constants

Numeric constants can be written in a variety of ways, including specific notation, octal

and hexadecimal. Although Perl tries to emulate natural human communication, the common

practice of using commas or spaces to break up a large integer constant into meaningful digit

groups cannot be used, since the comma has a syntactic significance in Perl. Instead, underscores

can be included in a number literal to improve legibility.

String constants

String constants can be enclosed in single or double quotes. The string is terminated by

the first next occurrence of the quote which started it, so a single-quoted string can include

double quotes and vice versa. The q (quote) and qq (double quote) operators allow you to use

any character as a quoting character. Thus q / any string/ or q (any string) are the same as 'any

string' and qq / any string / or qq (any string) are the same as "any string"

Variables and assignment Assignment

Borrowing from C, Perl uses '=' as the assignment operator. It is important to note that an

assignment statement returns a value, the value assigned. This permits statements like

$b = 4 + ($a = 3) ;

SCRIPTING LANGUAGES M.TECH. II YEAR I SEM (R18)

13

which assigns the value 3 to $a and the value 7 to $b.If it is required to interpolate a variable

value without an intervening space the following syntax, borrowed from UNIX shell scripts , is

used:

$a = "Java ;

$b = "$ { a } Script" ; which gives $b the value "JavaScript".

<STDIN> - a special value

When the 'variable' <STDIN> appears in a context where a scalar value is required, it evaluates

to a string containing the next line from standard input, including the terminating newline. If

there is no input queued, Perl will wait until a line is typed and the return key pressed. The empty

string is treated as false in a Boolean context. If <STDIN> appears on the right-hand side of an

assignment to a scalar variable, the string containing the input line is assigned to the variable

named on the ;eft. If it appears in any other scalar context the string is assigned to the anonymous

variable: this can be accessed by the name $- : many operations use it as a default.

Scalar Expressions

Scalar data items are combined into expressions using operators. Perl has a lot of operators, which

are ranked in 22 precedence levels. These are carefully chosen so that the ‘obvious’ meaning is

what You get , but the old advice still applies: if in doubt ,use brackets to force the order of

evaluation . In the following sections we describe the available operators in their natural

groupings-arithmetic , strings, logical etc .

Arithmetic operators

Following the principles of ‘no surprises’ Perl provides the usual Arithmetic operators, including

auto-increment and auto-decrement operators after the manner of C: note that in

$c= 17 ; $d= ++$c;

The sequence is increment and the assign, whereas in

$c= 17 ; $d = $c++;

The sequence is assign then increment . As C, binary arithmetic operations can be combined with

SCRIPTING LANGUAGES M.TECH. II YEAR I SEM (R18)

14

assignment, e.g.

$a += 3;

This adds 3 to $a, being equivalent to

$a =$a + 3;

As in most other languages, unary minus is used to negate a numeric value; an almost never-

used unary plus operator is provided for completeness.

String Operators

Perl provides very basic operators on strings: most string processing is one using built-in

functions expressions, as described later. Unlike many languages use + as a concatenation

operator for strings, Perl uses a period for this purpose: this lack of overloading means that an

operator uniquely determines the context for its operands. The other string operator is x, which is

used to replicate strings, e.g.

$a =”Hello” x 3;

 Sets $a to “HelloHelloHello”.

The capability of combining an operator with assignment is extended to string operations. E.g.

$foo .= “ “ ; Appends a space to $foo.

So far, things have been boringly conventional for the most part. However, we begin to

get a taste of the real flavor of perl when we see how it adds a little magic when some

operators, normally used in arithmetic context, are used in a string context.

Two examples illustrate this.

1. Auto increment

If a variable has only ever been used in a string context, the auto increment operator can be

applied to it. If the value consists of a sequence of letters, or a sequence of letters followed by a

sequence of digits, the auto increment takes place in string mode starting with the right most

character, with ‘carry’ along the string. For example, the sequence

$a = ‘a0’ ; $b = ‘Az9’ ;

Print ++$a, ‘ ‘, ++$b; “/n”;

Prints a1 Ba0.

2. Unaryminus

This has an unusual effect on non numeric values. Unary minus applied to a string which starts

SCRIPTING LANGUAGES M.TECH. II YEAR I SEM (R18)

15

with a plus or minus character returns the same string, but starting with the opposite sign. Unary

minus applie to an identifier returns a string consists of minus prefixed to the characters of the

identifiers. Thus if we have a variable named $config with the value “ foo”, then –config

evaluates the string “-foo”.

Comparison operators

The value of comparisons is returned as 1 if true, and an empty string (“ ”) if false, in

accordance with the convention described earlier. Two families of comparison operators

provide, one for numbers and one for strings. The operator used determines the context , and

perl converts the operands as required to match the operator. This duality is necessary because a

comparison between strings made up entirely numerical digits should apply the usual rules for

sorting strings ASCII as a collating sequence, and this may not give the same result as the

numerical comparison(‘5’ <’10’) returns the value true as a numerical comparison having been

converted into (5<10) where as the string comparison (‘5’ lt ‘10’) returns false, since 10 comes

before 5 in the canonical sort order for ASCII strings.

numbers, cmp for strings), performs a three way test, returning -1 for less-than, 0 for equal an

+1 for greater-than. Note that the comparison operators are non associative, so an

expression like $a > $b > $c Is erroneous.

Logical operators

The logical operators allows to combine conditions using the usual logical operations ‘not’(!,

not), ‘and’(&&,and) and ‘or’(||,or). Perl implements the ‘and’ and ‘or’ operators in ‘shortcut’

mode, i.e evaluation stops as soon as the final result is certain using the rules false &&b=false,

and true||b=true. Before Perl 5,only the !, && and || operators were provided. The new set, not,

and ,or, are provided partly to increase readability, and partly because their extra-low precedence

makes it possible to omit brackets in most circumstances-the precedence ordering is chosen so that

numerical expressions can be compared without having to enclose them in brackets, e.g. Print”

OK\n” if $a<10 and $b<12;

Bitwise operators

The unary tilde(~) applied to a numerical argument performs bitwise negation on its operand,

SCRIPTING LANGUAGES M.TECH. II YEAR I SEM (R18)

16

generating the one’s compliment. If applied to a string operand it complements all the bits in the

string – effective way of inverting a lot of bits. The remaining bitwise operators - & (and), | (or)

and ^(exclusive or)- have a rather complicated definition. If either operand is a number or a

variable that has previously been used as a number, both operands are converted to integers if

need be, and the bitwise operation takes place between the integers. If the both operands are

strings, and if variables have never been used as numbers, Perl performs the bitwise operation

between corresponding bits in the two strings, padding the shorter strings with zeros as required.

Conditional expressions

A conditional expression is one whose values is chosen from two alternatives at run-time

depending on the outcome of a test. The syntax is borrowed from C

Test ? true_exp: false_exp

The first expression is evaluated as Boolean value : if it returns true the whole expression is

replaced by true_exp, otherwise it is replaced by false_exp, e.g.

$a= ($a<0)? 0 : $a;

Control structures

The Control Structures for conditional execution and repetition all the control mechanisms is

similar to C.

BLOCKS

A block is a sequence i\of one or more statements enclosed in curly braces.

 Eg: { $positive=1;

 $negative=-1;}

 The last statement is the block terminated by the closing brace. In, Perl they use conditions to

control the evaluation of one or more blocks. Blocks can appear almost anywhere that a

statement can appear such a block called bare block.

Conditions

A condition is a Perl expression which is evaluated in a Boolean context: if it evaluates to

zero or the empty string the condition is false, otherwise it is true. Conditions usually make use

of relational operators.

 Eg: $total>50

SCRIPTING LANGUAGES M.TECH. II YEAR I SEM (R18)

17

$total>50 and $total<100

Simple Conditions can be combined into a complex condition using the logical operators. A

condition can be negated using the ! operator.

 Eg: !($total>50 and $total<100)

CONDITIONAL EXECUTION

If-then-else statements

if ($total>0)

{

print

“$total\n”-

if ($total>0)

{

print “$total\n”

}

else

{

print “bad total!\n”-

}

}

A single statement is a block and requires braces round it. The if statement requires that the

expression forming the condition is enclosed in brackets. The construct extends to multiple

selections

Eg: if ($total>70)

{

$grade=”A”;

}

elsif ($total >50)

{

SCRIPTING LANGUAGES M.TECH. II YEAR I SEM (R18)

18

$grade=”B”;

}

elsif ($total>40)

{

$grade=”C”;

} else {

$grade=”F”;

$total=0;

}

Alternatives to if-then-else

To use a conditional expression in place of an if-then-else

construct. if ($a<0)

($

b=

0)

el

se

($

b=

1)

can be written as

$b= ($a<0)? 0:1;

To use the ‘or’ operator between statements Eg: open (IN, $ARGV[0] or die

“Can’t open $ARGV*0+\n”;

Statement qualifiers

A single statement(not a block) can be followed by a conditional modifier.

Eg: print “OK\n”

if

 $volts>

=1.5; print

SCRIPTING LANGUAGES M.TECH. II YEAR I SEM (R18)

19

“Weak\n”

if

$volts>=1.2 and

$volts<1.5;

print

“Replace\n” if

 $volts

<1.2;

Code using Conditional expressions,

Eg: print (($volts>=1.5)? “Ok\n”; (($volts>=1.2)? “Weak\n”; “Replace\n”));

REPETITION:

Repetition mechanisms include

both Testing Loops

Counting Loops

TESTING LOOPS

While ($a!

= $b) if ($a

> $b) {

$a=$a-$b

} else {

$b=$b-$a

}

}

With the if statement, the expression that forms the condition must be enclosed in brackets.

But now, while can be replaced by until to give the same effect. Single statement can use

while and until as statement modifiers to improve readability.

Eg: $a += 2 while $a <$b;

$a += 2 until $a > $b;

SCRIPTING LANGUAGES M.TECH. II YEAR I SEM (R18)

20

Here, although the condition is written after the statement, it is evaluated before the

statement is executed, if the condition is initially false the statement will be never executed.

When the condition is attached to a do loop is same as a statement modifier, so the block is

executed at least once.

do
{

……….

} while $a! = $b;

Counting Loops

In C,

for ($i= 1;$i<=10;$i++)

{

$i_square=$i*$i;

$i_cube=$i**3;

print “$i\t$i_square\t$i_cube\n”;

}

In perl

foreach $i (1…10),

$i_square=$i* $i;

$i_cube=$i**3;

print “$i\t$i_square\t$i_cube\n”;

}

LISTS

A list is a collection of scalar data items which can be treated as a whole, and has a temporary

existence on the run-time stack. It is a collection of variables, constants (numbers or strings) or

expressions, which is to be treated as a whole. It is written as a comma-separated sequence of

values, eg: “red” , “green” , “blue”. A list often appears in a script enclosed in round brackets. For

eg:(“red” , “green”, “blue”) Shorthand notation is acceptable in lists, for eg: (1..8)(“A”..”H” ,

“O”..”Z”) qw(the quick brown fox) is a shorthand for (“the” , ”quick” , ”brown” , ”fox”).

Arrays and Hashes: These are the collections of scalar data items which have an assigned storage

space in memory, and can therefore be accessed using a variable name.

SCRIPTING LANGUAGES M.TECH. II YEAR I SEM (R18)

21

ARRAYS

An array is an ordered collection of data whose comparisons are identified by an ordinal index: It

is usually the value of an array variable. The name of the variable always starts with an @, eg:

@days_of_week.

NOTE: An array stores a collection, and List is a collection, So it is natural to assign a list to an

array.

Eg: @rainfall = (1.2 , 0.4 , 0.3 , 0.1 , 0 , 0 , 0);

A list can occur as an element of another list.

Eg: @foo = (1 , 2 , 3, “string”);

@foobar = (4 , 5 , @foo , 6);

The foobar result would be (4 , 5 , 1 , 2 , 3 , “string” , 6);

HASHES

An associative array is one in which each element has two components : a key and a value,

the element being ‘indexed’ by its key. Such arrays are usually stored in a hash table to

facilitate efficient retrieval, and for this reason Perl uses the term hash for an associative

array. Names of hashes in Perl start with a % character: such a name establishes a list

context. The index is a string enclosed in braces(curly brackets).

Eg: $somehash{aaa} = 123;

$somehash,“$a”- = 0; //The key is a the current value of $a.

%anotherhash =%somehash;

Array Creation

Array variables are prefixed with the @sign and are populated using either parenthesis

or the qw operator.

Eg: @array = (1 , 2

,”Heelo”); @array =

qw/This is an array/;

In C, C++, Java; Array is a collection of homogeneous elements, whereas; In Perl,

Array is collection of heterogeneous elements.

SCRIPTING LANGUAGES M.TECH. II YEAR I SEM (R18)

22

Accessing Array Elements

 When accessing an individual element, we have to use the ‘$’ symbol followed by

variable name along with the index in the square brackets.

Eg: $bar = $foo[2];

$foo[2] = 7;

 A group of contiguous elements is called a slice , and is accessed using a simple

syntax: @foo[1..3] is the same as the list ($foo[1], $foo[2], $foo[3])

 A slice can be used as the destination of an assignment,

Eg: @foo*1..3+ = (“hop” , “skip” , “jump”);

 Like a slice, a selection can appear on the left of an assignment: this leads to a useful

idiom for rearranging the elements in a list.

Eg: To swap the first two elements of an array, we write as;

@foo[0 , 1] = @foo[1 , 0];

Manipulating Lists

Perl provides several built-in functions for list manipulation. Three useful ones are:

 shift LIST : Returns the first item of LIST, and moves the remaining items down,

reducing the size of LIST by 1.

 unshift ARRAY, LIST : The opposite of shift. Puts the items in LIST at the beginning of

ARRAY, moving the original contents up by the required amount.

 push ARRAY, LIST : Similar to unshift, but adds the values in LIST to the end of

ARRAY.

Iterating over Lists
foreach: The foreach loop performs a simple iteration over all the elements of a list.

Eg: foreach $item (list)

{

……………

}

The block is executed repeatedly with the variables $item taking each value from the list in turn.

The variable can be omitted, in which case $_ will be used.The natural Perl idiom for

SCRIPTING LANGUAGES M.TECH. II YEAR I SEM (R18)

23

manipulating all items in an array is ;

foreach (@array)

{

……..#process $_

}

Working With Hashes

 A hash is a set of key/value pairs.

 Hash variables are preceded by a “%” sign.

 To refer to a single element of a hash, you will use the hash variable name preceded by a

‘$’ sign and followed by the “key” associated with the value in the curly brackets.

 It is also called as associative array.

Creating Hashes

We can assign a list of key-value pairs to a hash, as, for example

 %foo = (key1, value1, key2, value2, …….);

An alternative syntax is provided using the => operator to associate key-value pairs, thus:

 %foo = (banana => ‘yellow’ , apple => ‘red’ , grapes => ‘green’,);

Manipulating Hashes

Perl provides a number of built-in functions to facilitate manipulation of hashes. If we have a

hash called HASH

 keys % HASH returns a list of the keys of the elements in the hash, and

 values % HASH returns a list of the values of the elements in the hash.

Eg: %foo = (banana => ‘yellow’ , apple => ‘red’ , grapes => ‘green’,);

 keys %

HASH returns banana, apple ,grapes values % HASH returns yellow, red, green.

These functions provide a convenient way to iterate over the elements of a hash using

foreach: foreach (keys % HASH)

SCRIPTING LANGUAGES M.TECH. II YEAR I SEM (R18)

24

{

process $magic($_)

}

Other useful operators for manipulating hashes are delete and exists.

 delete $HASH{$key} removes the element

 exists $HASH{$key} returns true.

Strings, Pattern Matching & Regular Expressions in Perl

The most powerful features of Perl are in its vast collection of string manipulation operators and

functions. Perl would not be as popular as it is today in bioinformatics applications if it did not

contain its flexible and powerful string manipulation capabilities.

String concatenation

To concatenate two strings together, just use the (.) dot

$a . $b;

$c = $a . $b;

$a = $a . $b;

$a .= $b;

The first expression concatenates $a and $b together, but the the result was immediately lost

unless it is saved to the third string $c as in case two. If $b is meant to be appended to the end of

$a, use the .= operator will be more convenient. As is any other assignments in Perl, if you see an

assignment written this way $a = $a op expression, where op stands for any operator and expr

stands for the rest of the statement, you can make a shorter version by moving the op to the front

of the assignment, e.g., $a op= expression.

Substring extraction

The counterpart of string concatenation is substring extraction. To extract the substring at

certain location inside a string, use the substr function:

 $second_char = substr($a, 1, 1);

SCRIPTING LANGUAGES M.TECH. II YEAR I SEM (R18)

25

 $last_char = substr($a, -1, 1);

 $last_three_char = substr($a, -3);

The first argument to the substr function is the source string, the second argument is the start

position of the substring in the source string, and the third argument is the length of the substring

to extract. The second argument can be negative, and if that being the case, the start position will

be counted from the back of the source string. Also, the third argument can be omitted. In that

case, it will run to the end of the source string. Particularly interesting feature in Perl is that the

substr function can be assigned into as well, meaning that in addition to string extraction, it can

be used as string replacement:

substr($a, 1, 1) = 'b'; # change the second character to b

substr($a, -1) = 'abc'; # replace the last character as abc (i.e., also add two new letters c)

substr($a, 1, 0) = 'abc'; #insert abc in front of the second character

Substring search

In order to provide the second argument to substr, usually you need to locate the substring to be

extracted or replaced first. The index function does the job:

o $loc1 = index($string, "abc");

o $loc2 = index($string, "abc", $loc+1);

o print "not found" if $loc2<0;

The index function takes two arguments, the source string to search, and the substring to be

located inside the source string. It can optionally take a third argument to mean the start position

of the search. If the index function finds no substring in the source string anymore, then it returns

-1.

Regular expression

Regular expression is a way to write a pattern which describes certain substrings. In general, the

number of possible strings that can match a pattern is large, thus you need to make use of the

regular expression to describe them instead of listing all possibilities. If the possible substring

SCRIPTING LANGUAGES M.TECH. II YEAR I SEM (R18)

26

matches are just one, then maybe the index function is more efficient.

The following are some basic syntax rules of regular expression:

o Any character except the following special ones stands for itself. Thus abc matches

'abc', and xyz matches 'xyz'.

o The character . matches any single character. To match it only with the . character itself,

put an escape \ in front of it, so \. will match only '.', but . will match anything. To match

the escape character itself, type two of them \\ to escape itself.

o If instead of matching any character, you just want to match a subset of characters, put all

of them into brackets [], thus [abc] will match 'a', 'b', or 'c'. It is also possible to shorten the

listing if characters in a set are consecutive, so [a-z] will match all lowercase alphabets, [0-

9] will match all single digits, etc. A character set can be negated by the special ^ character,

thus [^0-9] will match anything but numbers, and [^a-f] will match anything but 'a' through

'f'. Again, if you just want to match the special symbols themselves, put an escape in front of them,

e.g., \[, \^ and \].

o All the above so far just match single characters. The power of regular expression lies in

its ability to match multiple characters with some meta symbols. The * will match 0 or

more of the previous symbol, the + will match 1 or more of the previous symbol, and ?

will match 0 or 1 of the previous symbol.

o For example, a* will match 'aaaa...' for any number of a's including none '', a+ will match 1

or more a's, and a? will match zero or one a's. A more complicated example is to match

numbers, which can be written this way [0-9]+. To matching real numbers, you need to

write [0-9]+\.?[0-9]*. Note that the decimal point and fraction numbers can be omitted,

thus we use ?, and * instead of +.

o If you want to combine two regular expressions together, just write them consecutively.If

you want to use either one of the two regular expressions, use the | meta symbol. Thus, a|b

will match a or b, which is equivalent to [ab], and a+|b+ will match any string of a's or b's.

The second case cannot be expressed using character subset because [ab]+ does not mean

the same thing as a+|b+.

o Finally, regular expressions can be grouped together with parentheses to change the order

of their interpretation. For example, a(b|c)d will match 'abd' or 'acd'. Without the

parentheses, it would match 'ab' or 'cd'.

SCRIPTING LANGUAGES M.TECH. II YEAR I SEM (R18)

27

The rules above are simple, but it takes some experience to apply them successfully on the actual

substrings you wish to match. There are no better ways to learn this than simply to write some

regular expressions and see if they match the substrings you have in mind.

The following are some examples:

[A-Z][a-z]* will match all words whose first character are capitalized

[A-Za-z_][A-Za-z0-9_]* will match all legal perl variable names

[+-]?[0-9]+\.?[0-9]*([eE][+-]?[0-9]+)? will match scientific numbers

[acgtACGT]+ will match all DNA strings

^> will match the > symbol only at the beginning of a string a$ will match the a letter

only at the end of a string

In the last two examples above, we introduced another two special symbols. The ^ which when

not used inside a character set to negate the character set, stands for the beginning of the string.

Thus, ^> will match '>' only when it is the first character of the string. Similarly, $ inside a

regular expression means the end of the string, so a$ will match 'a' only when it is the last

character of the string. These are so called anchor symbols.

Another commonly used anchor is \b which stands for the boundary of a word. In addition,

Perl introduces predefined character sets for some commonly used patterns, thus \d stands for

digits and is equivalent to [0-9], \w stands for word letters or numbers, and \s stands for space

characters ' ', \t, \n, \r, etc. The captial letter version of these negates their meaning, thus \D

matches non-digit characters, \W matches non-word characters, and \S matches non-

whitespaces. The scientific number pattern above can therefore be rewritten as:

[+-]?\d+\.?\d*([eE][+-]?\d+)?

Pattern matching

Regular expressions are used in a few Perl statements, and their most common use is in pattern

matching. To match a regular expression pattern inside a $string, use the string operator =~

combines with the pattern matching operator / /:

$string =~ /\w+/; # match alphanumeric words in $string

$string =~ /\d+/; # match numbers in $string

SCRIPTING LANGUAGES M.TECH. II YEAR I SEM (R18)

28

he pattern matching operator / / does not alter the source $string. Instead, it just returns a true or

false value to determine if the pattern is found in $string:

if ($string =~ /\d+/)

{

print "there are numbers in $string\n";

}

Sometimes not only you want to know if the pattern exists in a string, but also what it actually

matched. In that case, use the parentheses to indicate the matched substring you want to know,

and they will be assigned to the special $1, $2, ..., variables if the match is successful:

if ($string =~ /(\d+)\s+(\d+)\s+(\d+)/)
{

print "first three matched numbers are $1, $2, $3 in $string\n";

}

Note that all three numbers above must be found for the whole pattern to match

successfully, thus $1, $2 and $3 should be defined when the if statement is true. The same

memory of matched substrings within the regular expression are \1, \2, \3, etc. So, to check

if the same number happened twice in the $string, you can do this:

if ($string =~ /(\d).+\1/) {

print "$1 happened at least twice in $string\n";

}

You cannot use $1 in the pattern to indicate the previously matched number because $

means the end of the line inside the pattern. Use \1 instead.

Pattern substitution

In addition to matching a pattern, you can replace the matched substring with a new string using

the substitution operator. In this case, just write the substitution string after the pattern to match

and replace:

$string =~ s/\d+/0/; # replace a number with zero

$string =~ s:/:\\:; # replace the forward slash with backward slash

Unlike the pattern matching operator, the substitution operator does change the $string if a match

is found. The second example above indicates that you do not always need to use / to break the

pattern and substitution parts apart; you can basically use any symbol right after the s operator as

SCRIPTING LANGUAGES M.TECH. II YEAR I SEM (R18)

29

the separator. In the second case above, since what we want to replace is the forward slash

symbol, using it to indicate the pattern boundary would be very cumbersome and need a lot of

escape characters:

$string =~ s/\//\\/; # this is the same but much harder to read

For pattern matching, you can also use any separator by writing them with m operator, i.e., m:/:

will match the forward splash symbol. Natually, the substitution string may (and often does)

contain the \1, \2 special memory substrings to mean the just matched substrings. For example,

the following will add parentheses around the matched number in the source $string:

$string =~ s/(\d+)/(\1)/;

The parentheses in the replacement string have no special meanings, thus they were just added to

surround the matched number.

Modifiers to pattern matching and substitution

You can add some suffix modifiers to Perl pattern matching or substitution operators to tell them

more precisely what you intend to do:

/g tells Perl to match all existing patterns, thus the following prints all numbers in

$string

while ($string =~ /(\d+)/g)

{

print "$1\n";

}

$string =~ s/\d+/0/g; # replace all numbers in $string with zero

/i tells Perl to ignore cases, thus

$string =~ /abc/i; # matches AbC, abC, Abc, etc.

/m tells perl to ignore newlines, thus

"a\na\na" =~ /a$/m will match the last a in the $string, not the a before the first newline if

/m is not given.

Perl- Subroutines

A Perl subroutine or function is a group of statements that together performs a task. You can

divideup your code into separate subroutines. How you divide up your code among different

SCRIPTING LANGUAGES M.TECH. II YEAR I SEM (R18)

30

subroutines is up to you, but logically the division usually is so each function performs a specific

task.

Define and Call a Subroutine

The general form of a subroutine definition in Perl programming language is as

follows – sub subroutine_name

{

body of the subroutine

}

The typical way of calling that Perl subroutine is as follows – subroutine_nam e(list of argum

ents);Let's have a look into the following example, which defines a simple function and then

call it. Because Perl compiles your program before executing it, it doesn't matter

where you declare your

subroutine. #!/usr/bin/perl

Function definition sub Hello

{

print "Hello, World!\n";

}

Function call Hello();

When above program is executed, it produces the following result − Hello, World!

Passing Arguments to a Subroutine

You can pass various arguments to a subroutine like you do in any other programming language

and they can be accessed inside the function using the special array @_. Thus the first argument

to the function is in [0], these concision_[1], and so on.

You can pass arrays and hashes as arguments like any scalar but passing more than one array or

hash normally causes them to lose their separate identities.

Passing Lists to Subroutines

Because the @_ variable is an array, it can be used to supply lists to a subroutine. However,

because of the way in which Perl accepts and parses lists and arrays, it can be difficult to extract

the individual elements from @_. If you have to pass a list along with other scalar arguments,

then make list as the last argument as shown below −

SCRIPTING LANGUAGES M.TECH. II YEAR I SEM (R18)

31

#!/usr/bin/perl # Function definition sub PrintList

{

m y @ list = @ _;

print "Given list is @ list\n";

}

$ a = 10;

@ b = (1, 2, 3, 4);

Function call with list parameter PrintList($ a, @ b);

When above program is executed, it produces the following

result − Given list is 10 1 2 3 4

Passing Hashes to Subroutines

When you supply a hash to a subroutine or operator that accepts a list, then hash is automatically

translated into a list of key/value pairs. For example −

#!/usr/bin/perl

Function definition sub PrintHash

{

my (%hash) = @ _;

foreach m y $ key (keys %hash)

{

 my $ value = $ hash{$ key};

print "$ key : $ value\n";

}

}

%hash = ('nam e' => 'Tom ', 'age' => 19); # Function call with hash parameter PrintHash(%hash);

When above program is executed, it produces the following result −

nam ee : Tom

age : 19

Returning Value from a Subroutine

You can return a value from subroutine like you do in any other programming language. If you

are not returning a value from a subroutine then whatever calculation is last performed in a

SCRIPTING LANGUAGES M.TECH. II YEAR I SEM (R18)

32

subroutine is automatically also the return value. You can return arrays and hashes from the

subroutine like any scalar but returning more than one array or hash normally causes them to lose

their separate identities. So we will use references explained in the next chapter to return any

array or hash from a function. Let's try the following example, which takes a list of numbers and

then returns their average.

#! /usr/bin/Perl

Function definition sub Average {

Get total number of arguments passed.

$ n = scalar (@ _);

$ Sum = 0;

For each $ item (@ _)

{

$ Sum += $ item;

}

$ Average = $ sum / $ n; return $ average;

}

Function call

$ Num = Average (10, 20, 30);

Print "Average for the given numbers: $ num \n";

When above program is executed, it produces the following result − Average for the given

numbers: 20

Finer Points Of Looping

A loop statement allows us to execute a statement or group of statements multiple times

and following is the general form of a loop statement in most of the programming

languages −

SCRIPTING LANGUAGES M.TECH. II YEAR I SEM (R18)

33

Perl programming language provides the following types of loop to handle the

looping requirements.

Loop Type Description

while loop
Repeats a statement or group of statements while a given condition

is true. It tests the condition before executing the

loop body.

until loop
Repeats a statement or group of statements until a given condition

becomes true. It tests the condition before executing the loop body.

for loop Executes a sequence of statements multiple times and abbreviates

the code that manages the loop variable.

foreach loop The foreach loop iterates over a normal list value and sets

the variable VAR to be each element of the list in turn.

http://www.tutorialspoint.com/perl/perl_while_loop.htm
http://www.tutorialspoint.com/perl/perl_until_loop.htm
http://www.tutorialspoint.com/perl/perl_for_loop.htm
http://www.tutorialspoint.com/perl/perl_foreach_loop.htm

SCRIPTING LANGUAGES M.TECH. II YEAR I SEM (R18)

34

do...while loop Like a while statement, except that it tests the condition at

the end of the loop body

nested loops
You can use one or more loop inside any another while, for or

do..while loop.

Loop Control Statements

Loop control statements change the execution from its normal sequence. When execution

leaves a scope, all automatic objects that were created in that scope are destroyed.C supports

the following control statements. Click the following links to check their detail.

Control Statement Description

next statement Causes the loop to skip the remainder of its body and

immediately retest its condition prior to reiterating.

last statement
Terminates the loop statement and transfers execution to the

statement immediately following the loop.

continue statement
A continue BLOCK, it is always executed just before the

conditional is about to be evaluated again.

redo statement
The redo command restarts the loop block without evaluating

the conditional again. The continue block, if any, is not

executed.

goto statement It is used to transfer control by jumping to other label inside a

loop.

 Infinite Loop

A loop becomes infinite loop if a condition never becomes false. The for loop is traditionally used

for this purpose. Since none of the three expressions that form the for loop are required, you can

make an endless loop by leaving the conditional expression empty

#!/usr/local/bin/perl

for(;;)

{

printf"This loop will run forever.\n";}

http://www.tutorialspoint.com/perl/perl_do_while_loop.htm
http://www.tutorialspoint.com/perl/perl_nested_loops.htm
http://www.tutorialspoint.com/perl/perl_next_statement.htm
http://www.tutorialspoint.com/perl/perl_last_statement.htm
http://www.tutorialspoint.com/perl/perl_continue_statement.htm
http://www.tutorialspoint.com/perl/perl_redo_statement.htm
http://www.tutorialspoint.com/perl/perl_goto_statement.htm

SCRIPTING LANGUAGES M.TECH. II YEAR I SEM (R18)

35

You can terminate the above infinite loop by pressing the Ctrl + C keys. When the conditional

expression is absent, it is assumed to be true. You may have an initialization and increment

expression, but as a programmer more commonly use the for (;;) construct to signify an infinite

loop.

Multiple Loop Variables:

For loop can iterate over two or more variables simultaneously. Eg:

for($m=1,$n=1,$m<10,$m++,$n+=2)

{

…….

}

Here (,) operator is a list constructor, it evaluates its left hand argument.

Pack and Unpack

Pack Function

The pack function evaluates the expressions in LIST and packs them into a binary structure

specified by EXPR. The format is specified using the characters shown in Table below Each

character may be optionally followed by a number, which specifies a repeat count for the

type of value being packed. that is nibbles, chars, or even bits, according to the format. A

value of * repeats for as many values remain in LIST. Values can be unpacked with the

unpack function. For example, a5 indicates that five letters are expected. b32 indicates that

32 bits are expected. h8 indicates that 8 nibbles (or 4 bytes) are expected. P10 indicates that

the structure is 10 bytes long.

Syntax

Following is the simple syntax for this function

 pack EXPR, LIST

Return Value

This function returns a packed version of the data in LIST using TEMPLATE to

determine how it is coded.

Here is the table which gives values to be used in TEMPLATE

SCRIPTING LANGUAGES M.TECH. II YEAR I SEM (R18)

36

Character Description

A ASCII character string padded with null characters

A ASCII character string padded with spaces

B String of bits, lowest first

B String of bits, highest first

C A signed character (range usually -128 to 127)

C An unsigned character (usually 8 bits)

D A double-precision floating-point number

F A single-precision floating-point number

H Hexadecimal string, lowest digit first

H Hexadecimal string, highest digit first

I A signed integer

I An unsigned integer

L A signed long integer

L
An unsigned long integer

SCRIPTING LANGUAGES M.TECH. II YEAR I SEM (R18)

37

N A short integer in network order

N A long integer in network order

P A pointer to a string

S
A signed short integer

S An unsigned short integer

U
Convert to uuencode format

V
A short integer in VAX (little-endian) order

V
A long integer in VAX order

X A null byte

X Indicates "go back one byte"

@
Fill with nulls (ASCII 0)

Example

#!/usr/bin/perl -w

$bits =pack("c",65);

prints A, which is ASCII

65. print"bits are $bits\n";

$bits =pack("x");

$bits is now a null chracter.

print"bits are $bits\n";

SCRIPTING LANGUAGES M.TECH. II YEAR I SEM (R18)

38

$bits =pack("sai",255,"T",30);

creates a seven charcter string on most computers' print"bits are $bits\n";

@array=unpack("sai","$bits");

#Array now contains three elements: 255, T and 30.

print"Array $array[0]\n";

Following is the example code showing its basic usage

print"Array $array[1]\n";

print"Array $array[2]\n";

When above code is executed, it produces the following result −

bits are A

bits are bits are T- Array

255 Array T

Array 30

Unpack Function

The unpack function unpacks the binary string STRING using the format

specified in TEMPLATE. Basically reverses the operation of pack,

returning the list of packed values according to the supplied format. You

can also prefix any format field with a %<number> to indicate that you

want a 16-bit checksum of the value of STRING, instead of the value.

Syntax

Following is the simple syntax for this function

 unpack TEMPLATE, STRING

Return Value

This function returns the list of unpacked values.

Here is the table which gives values to be used in TEMPLATE.

SCRIPTING LANGUAGES M.TECH. II YEAR I SEM (R18)

39

Character Description

A ASCII character string padded with null characters

A ASCII character string padded with spaces

B String of bits, lowest first

B String of bits, highest first

C A signed character (range usually -128 to 127)

C An unsigned character (usually 8 bits)

D A double-precision floating-point number

F A single-precision floating-point number

H Hexadecimal string, lowest digit first

H Hexadecimal string, highest digit first

I A signed integer

I An unsigned integer

L A signed long integer

L An unsigned long integer

SCRIPTING LANGUAGES M.TECH. II YEAR I SEM (R18)

40

N A short integer in network order

N A long integer in network order

P A pointer to a string

S A signed short integer

S An unsigned short integer

U Convert to uuencode format

V A short integer in VAX (little-endian) order

V A long integer in VAX order

X A null byte

X Indicates "go back one byte"

@ Fill with nulls (ASCII 0)

Example

Following is the example code showing its basic usage

print"bits are $bits\n";

$bits =pack("x");

$bits is now a null chracter. print"bits are

$bits\n";

$bits =pack("sai",255,"T",30);

creates a seven charcter string on most computers' print"bits are $bits\n";

SCRIPTING LANGUAGES M.TECH. II YEAR I SEM (R18)

41

@array=unpack("sai","$bits");

#Array now contains three elements: 255, A and

47. print"Array $array[0]\n"; print"Array $array[1]\n";

When above code is executed, it produces the following result –

bits are A bits are bits are

�T-

Array2

Files

The basics of handling files are simple: you associate a filehandle with an external entity

(usually a file) and then use a variety of operators and functions within Perl to read and update

the data stored within the data stream associated with the filehandle. A filehandle is a named

internal Perl structure that associates a physical file with a name. All filehandles are capable of

read/write access, so you can read from and update any file or device associated with a

filehandle. However, when you associate a filehandle, you can specify the mode in which the

filehandle is opened. Three basic file handles are - STDIN, STDOUT, and STDERR, which

represent standard input, standard output and standard error devices respectively.

Opening and Closing Files

There are following two functions with multiple forms, which can be used to open any

new or existing file in Perl.

open FILEHANDLE,

EXPR open FILEHANDLE

sysopen FILEHANDLE, FILENAME, MODE,

PERMS sysopen FILEHANDLE, FILENAME,

Here FILEHANDLE is the file handle returned by the open function and EXPR is the expression

having file name and mode of opening the file.

Open Function

Following is the syntax to open file.txt in read-only mode. Here less than < sign

indicates that file has to be opened in read-only mode.

 open(DATA,"<file.txt");

SCRIPTING LANGUAGES M.TECH. II YEAR I SEM (R18)

42

Here DATA is the file handle which will be used to read the file. Here is the example which will

open a file and will print its content over the screen.

#!/usr/bin/perl

open(DATA,"<file.txt")ordie"Couldn't open file file.txt, $!"; while(<DATA>)

{

print"$_";

}

Following is the syntax to open file.txt in writing mode. Here less than > sign indicates that file has

to be opened in the writing mode.

This example actually truncates (empties) the file before opening it for writing, which may not be

the desired effect. If you want to open a file for reading and writing, you can put a plus sign before

the > or < characters.

For example, to open a file for updating without truncating it

To truncate the file first

You can open a file in the append mode. In this mode writing point will be set to the end of the

file.

A double >> opens the file for appending, placing the file pointer at the end, so that you can

immediately start appending information. However, you can't read from it unless you also place a

plus sign in front of it

Following is the table which gives the possible values of different modes.

open(DATA,">file.txt")ordie"Couldn't open file file.txt, $!";

open(DATA,"+<file.txt");ordie"Couldn't open file file.txt, $!";

open DATA,"+>file.txt"ordie"Couldn't open file file.txt, $!";

open(DATA,">>file.txt")||die"Couldn't open file file.txt, $!";

open(DATA,"+>>file.txt")||die"Couldn't open file file.txt, $!";

SCRIPTING LANGUAGES M.TECH. II YEAR I SEM (R18)

43

Entities Definition

< or r Read Only Access

> or w Creates, Writes, and Truncates

>> or a Writes, Appends, and Creates

+< or r+ Reads and Writes

+> or w+ Reads, Writes, Creates, and Truncates

+>> or a+ Reads, Writes, Appends, and Creates

Sysopen Function

 The sysopen function is similar to the main open function, except that it uses the system

open() function, using the parameters supplied to it as the parameters for the system function For

example, to open a file for updating, emulating the +<filename format from open

 Or to truncate the file before updating

You can use O_CREAT to create a new file and O_WRONLY- to open file in write only mode

and O_RDONLY - to open file in read only mode. The PERMS argument specifies the file

permissions for the file specified if it has to be created. By default it takes 0x666.Following is the

table, which gives the possible values of MODE.

sysopen(DATA,"file.txt", O_RDWR);

sysopen(DATA,"file.txt", O_RDWR|O_TRUNC);

SCRIPTING LANGUAGES M.TECH. II YEAR I SEM (R18)

44

Entities Definition

O_RDWR Read and Write

O_RDONLY Read Only

O_WRONLY Write Only

O_CREAT Create the file

O_APPEND Append the file

O_TRUNC Truncate the file

O_EXCL Stops if file already exists

O_NONBLOCK Non-Blocking usability

Close Function To close a filehandle, and therefore disassociate the filehandle from the

corresponding file, you use the close function. This flushes the filehandle's buffers and closes the

system's file descriptor.

If no FILEHANDLE is specified, then it closes the currently selected filehandle. It returns true only

if it could successfully flush the buffers and close the file.

close FILEHANDLE

close

close(DATA)||die"Couldn't close file properly";

SCRIPTING LANGUAGES M.TECH. II YEAR I SEM (R18)

45

Reading and Writing Files

 Once you have an open filehandle, you need to be able to read and write information.

There are a number of different ways of reading and writing data into the file.

The<FILEHANDLE> Operator

The main method of reading the information from an open file handle is the

<FILEHANDLE> operator.

In a scalar context, it returns a single line from the file handle. For example

#!/usr/bin/perl

print"What is your name?\n";

$name =<STDIN>; print"

When you use the <FILEHANDLE> operator in a list context, it returns a list of lines from the

specified filehandle. For example, to import all the lines from a file into an array

getc Function

The getc function returns a single character from the specified FILEHANDLE, or STDIN if

none is specified

If there was an error, or the filehandle is at end of file, then undef is returned instead.

Read Function

The read function reads a block of information from the buffered filehandle This function is used

to read binary data from the file.

read FILEHANDLE, SCALAR, LENGTH

#!/usr/bin/perl

open(DATA,"<import.txt")ordie"Can't open data"; @lines=<DATA>;

close(DATA);

getc FILEHANDLE

getc

read FILEHANDLE, SCALAR, LENGTH,

OFFSET

SCRIPTING LANGUAGES M.TECH. II YEAR I SEM (R18)

46

The length of the data read is defined by LENGTH, and the data is placed at the start of SCALAR if

no OFFSET is specified. Otherwise data is placed after OFFSET bytes in SCALAR. The function

returns the number of bytes read on success, zero at end of file, or undef if there was an error.

Print Function: For all the different methods used for reading information from filehandles, the

main function for writing information back is the print function.

The print function prints the evaluated value of LIST to FILEHANDLE, or to the current output

filehandle (STDOUT by default). For example

Copying FilesHere is the example, which opens an existing file file1.txt and read it line by line

and generate another copy file file2.txt.

#!/usr/bin/perl

Open file to read open(DATA1,"<file1.txt");

 # Open new file to write

open(DATA2,">file2.txt");

Copy data from one file to another. while(<DATA1>)

{

print DATA2 $_;

}

}

close(DATA1); close(DATA2);

available in /usr/test directory. This function renames the takes two arguments and it just rename

existing file. Deletingan Existing File Here is an example, which shows how to delete a file file1.txt

using the unlink function.

print FILEHANDLE LIST

print LIST print

print "Hello World!\n";

#!/usr/bin/perl

unlink("/usr/test/file1.txt");

SCRIPTING LANGUAGES M.TECH. II YEAR I SEM (R18)

47

Positioning inside a File You can use to tell function to know the current position of a file and

seek function to point a particular position inside the file.

 Tell Function The first requirement is to find your position within a file, which you do using the

tell function.

This returns the position of the file pointer, in bytes, within FILEHANDLE if specified, or the

current default selected filehandle if none is specified.

Seek Function

The seek function positions the file pointer to the specified number of bytes within a file The

function uses the fseek system function, and you have the same ability to position relative to three

different points: the start, the end, and the current position. You do this by specifying a value for

WHENCE. Zero sets the positioning relative to the start of the file. For example, the line sets the

file pointer to the 256th byte in the file.

 seek DATA, 256, 0;

File Information: You can test certain features very quickly within Perl using a series of test

operators known collectively as -X tests. For example, to perform a quick test of the various

permissions on a file, you might use a script like this

tell

tell FILEHANDLE

 seek FILEHANDLE, POSITION, WHENCE

#/usr/bin/perl

my $file ="/usr/test/file1.txt";

my(@description, $size);

if(-e $file)

{

push@description,'binary'if(-B _);

SCRIPTING LANGUAGES M.TECH. II YEAR I SEM (R18)

48

Here is the list of features, which you can check for a file or directory −

Operator Definition

-A Script start time minus file last access time, in days.

-B Is it a binary file?

-C Script start time minus file last inode change time, in days.

-M Script start time minus file modification time, in days.

-O Is the file owned by the real user ID?

-R Is the file readable by the real user ID or real group?

-S Is the file a socket?

-T Is it a text file?

-W Is the file writable by the real user ID or real group?

push@description,'a socket'if(-S _);

push@description,'a text file'if(-T _);

push@description,'a block special file'if(-b _);

push@description,'a character special file'if(-c _);

push@description,'a directory'if(-d _); push@description,'executable'if(-x _);

push@description,(($size =-s _))?"$size bytes":'empty'; print"$file is ", join(',

',@description),"\n";

}

SCRIPTING LANGUAGES M.TECH. II YEAR I SEM (R18)

49

-X Is the file executable by the real user ID or real group?

-b Is it a block special file?

-c Is it a character special file?

-d Is the file a directory?

-e Does the file exist?

-f Is it a plain file?

-g Does the file have the setgid bit set?

-k Does the file have the sticky bit set?

-l Is the file a symbolic link?

-o Is the file owned by the effective user ID?

-p Is the file a named pipe?

-r Is the file readable by the effective user or group ID?

-s Returns the size of the file, zero size = empty file.

-t Is the filehandle opened by a TTY (terminal)?

-u Does the file have the setuid bit set?

SCRIPTING LANGUAGES M.TECH. II YEAR I SEM (R18)

50

-w Is the file writable by the effective user or group ID?

-x Is the file executable by the effective user or group ID?

-z Is the file size zero?

EVAL : The eval operator comes in 2 forms

1. In the first form ,eval takes an arbitrary string as an operand and evaluates the string

and executed in the current context.The value returned is the value of the last

expression evaluated.In case of syntax error or runtime error,eval returns the value

“undefined” and places the error in the variable $@

Ex:

 $myvar =’ …’;

 ….

 $value = eval “ \$$myvar “;

2. In the second form ,it takes a block as an argument and the block is compiled only once. If

there is a runtime error,the error is returned in $@. Instead of try we use eval and instead of

catch we test $@\

Ex: Eval

 {

 …….

 }

 If ($@ ne ‘ ‘)

 {

 ……..

 }

Data Structures

Arrays Of Arrays : In perl a two dimensional array is constructed by creating an array of

references to anonymous arrays.

For ex: @colors = ([35,39,43] , [4,5,8] , [32,31,25]) ;

The array composer converts each comma-separated list to an anonymous array in memory and

returns a reference and when we write an exp. Like $colors [0][1] = 64;

SCRIPTING LANGUAGES M.TECH. II YEAR I SEM (R18)

51

$colors [0] is a reference to an array and 2nd subscript represents the element present in that array.

A two dimensional array can be dynamically created by using PUSH operator to add a reference to

an anonymous array to the top level array. For ex: we are interested in converting a table set of data

having white spaces between the fields can be converted to two dimensional array by repeatedly

using split to put the fields of a line into list and then using push to add the reference to an array.

While (<STDIN>)

{

Push @table , [split]

}

COMPLEX DATA STRUCTURES:

Not only an array of arrays can be created but we can create hashes of hashes ,arrays of hashes

and hashes of arrays. By combining all these possibilities ,data structures of great complexity can

be created ex: doubly linked list. We can make an element of the array a hash containing three

fields with keys ‘L’(left neighbour) ,’ R’(right neighbour) and ‘C’(content). The values related to

L and R are references to element hashes and the value of C can be

anything(scalar,variables,hash ,reference).

 Ex: We can move forwards along the list with

 $current = $current->{‘R’} ; And backwards with

 $current = $current->{‘L’} ; Create a new element

$new = { L =>undef , R=>undef , C=>…} ;

And we can insert new element after current element as

$new->{‘R’}=$current->{‘R’} ;

$current{‘R’}->{‘L’}= $new;

$current{‘R’}=$new ;

$new->{‘L’} = $current ;

And the current element can be deleted as

$current->{‘L’}->{‘R’} = $current->{‘R’} ;

$current->{‘R’}->{‘L’} = $current->{‘L’} ;

Packages

Packages are the basis for libraries, modules and objects. It is the unit of code with its own

namespace(i.e. separate symbol table),which determines bindings of names both at compile- time

SCRIPTING LANGUAGES M.TECH. II YEAR I SEM (R18)

52

and run-time. Initially code runs in default package main. Variables used in a package are global

to that package only.

Ex:$A::x is the variable x in package A. Package A ;

$x = 0;

……. Package B ;

$x = 1 ;

……. Package A ; Print $x; output: zero.

The package B declaration switches to a different symbol table then the package A points to the

original symbol table having $x =0;.

Nested packages can be created of the form A::B provided the variables should be of the fully

qualified form Ex>$A::B::x.

A package can have one or more BEGIN routines and also END routines.Package declaration

is rarely used on its own.

Modules

Libraries and modules are packages contained within a single file and are units of program

reusability. The power of perl is increased by the usage of modules that provide functionality

in specific application areas. To be fact module is nothing but a package contained in a

separate file whose name is same as the package name with the extension .pm and makes use

of built-in-support. The use of modules make mathematical routines in the library math.p1 are

converted into a module math.pm and can be written as Ex: Use math ; at the start of the

program and the subroutines are available .The subroutine names imported are those defined in

the export list of the math module and it is possible to suppress the import of names but loses

the point of the module.

Ex: use IO : : File ;

Indicates a requirement for the module File.pm which will be found in a directory called IO.

The use of “ use math (‘sin’ , ‘cos’ , ‘tan’)“ is same as BEGIN {Require “ Math.pm” ; Math ::

import (‘sin’ , ‘cos’ , ‘tan’);}

The module names are imported by calling the import() method defined in the module. The

package writer is free to define import() in any way.

SCRIPTING LANGUAGES M.TECH. II YEAR I SEM (R18)

53

Objects

Objects in Perl provide a similar functionality as objects in real object oriented programming

(OOP), but in a different way. They use the same terminology as OOP, but the words have

different meanings as given below.

 Object: An object with in Perl is a reference to a data type that knows what class it

belongs to. The object is stored as a reference in a scalar variable. The object is said to be

blessed into a class: this is done by calling the built in function bless in a constructor.

 Constructor: A constructor is just a subroutine that returns a reference to an object.

 Class: A class is a package that provides methods to deal with objects that belong to it.

Method: A method is a subroutine that expects an object reference as its first argument.

Constructors

Objects are created by a constructor subroutine which is generally called new.

 Eg. Package Animal;

 sub new

 { my $ref ={ };

 bless ref; return ref;

 }

The flower brackets { } returns a reference to an anonymous hash. So the new constructor returns a

reference to an object that is an empty hash, and knows that it belongs to the package Animal.

Instances

We can create the instances for the object with this defined constructor as

$Dougal = new Animal;

$Ermyntrude = new Animal;

This makes $Dougal and $Ermyntrude references to objects that are empty hashes, and know

that they belong to the Animal class.

SCRIPTING LANGUAGES M.TECH. II YEAR I SEM (R18)

54

Method Invocation

Perl supports two syntactic forms for invoking methods one is by using arrow operator and

another one is by using Indirect objects. If a class is used to invoke the method, that argument will

be the name of the class. If an object is used to invoke the method, that argument will be the

reference to the object. Whichever it is, we'll call it the method's invocant. For a class method, the

invocant is the name of a package. For an instance method, the invocant is a reference that

specifies an object.

Method Invocation Using the Arrow Operator:

For example if set_species, get_species are the methods they can be invoked using arrow operator

as follows.

$Dougal -> set_species ‘Dog’;

$Dougal_is ->= $Dougal->get_species;

Method Invocation Using Indirect Objects: The methods can be invoked by using indirect objects as

given below

 set_species $Dougal, ‘Dog’;

$Dougal_is = get _species $Dougal;

Attributes

Subroutine declarations and definitions may optionally have attribute lists associated with them. An

attribute is a piece of data belonging to a particular object. Unlike most object-

oriented languages, Perl provides no special syntax or support for

declaring and manipulating attributes. Attributes are often stored in the

object itself. For example, if the object is an anonymous hash, we can

store the attribute values in the hash using the attribute name as the key.

E.g: sub species

{

my $self =shift;

my $was = $self->{‘species’};

- - - - - - - - - -

SCRIPTING LANGUAGES M.TECH. II YEAR I SEM (R18)

55

- - - - - - - -

}

Class Methods And Attributes

There are operations that are relevant to the class and not need to operate on a specific instance are

called class methods or static methods. Similarly attributes that are common to all instances of a

class are called as class attributes. Class attributes are just package global variables and class

methods are just subroutines that do not require an object reference as the first argument

E.g. the new constructor.

Inheritance

Perl only provides method inheritance. Inheritance is realized by including a special array @ISA in

the package that defines the derived class. For single inheritance @ISA is an array of one element,

the name of the base class. Multiple inheritance can be realized by making @Isa an array of more

than one element. Each element in the array @ISA is the name of the another package that is being

used as a class. If a method cannot be found, the packages referenced in @Isa are recursively

searched, depth first. The current class is derived class and those referenced in @ISA are the base

classes.

e.g : package Employee; use Person;

use strict;

our @ISA = qw(Person);

inherits from Person Interfacing to the OS:

Creating Internet Ware Applications

The internet is a rich source of information, held on web servers, FTP servers, POP/IMAP mail

servers, news servers etc. A web browser can access information on web servers and FTP servers,

and clients access mail and news servers. however, this is not the way of to the information: an

'internet-aware' application can access a server and collect the information without manual

intervention. For suppose that a website offers 'lookup' facility in which the user a query by filling

in a then clicks the 'submit' button . the data from the form in sent to a CGI program on the

server(probably written in which retrieves the information, formats it as a webpage, and returns the

page to the browser. A perl application can establish a connection to the server, send the request in

SCRIPTING LANGUAGES M.TECH. II YEAR I SEM (R18)

56

the format that the browser would use, collect the returned HTML and then extract the fields that

form the answer to the query. In the same way, a perl application can establish a connection to a

POP3 mail server and send a request which will result in the server returning a message listing the

number of currently unread messages.

Much of the power of scripting languages comes from the way in which they hide the complexity of

operations, and this is particularly the case when we make use of specialized modules: tasks that

might pages of code in C are achieved in few lines. The LWP (library for WWW access in perl)

collection of modules is a very good case in point it makes the kind of interaction described above

almost trivial. The LWP:: simple module is a interface to web servers. It can be achieved by

exploiting modules, LWP::simple we can retrieve the contents of a web page in a statement:

use LWP::simple $url=...http://www.somesite.com/index.html..;

$page=get($url);

Dirty Hands Internet Programming:

Modules like LWP :: Simple and LWP: :User Agent meet the needs of most programmers requiring

web access, and there are numerous other modules for other types of Internet access.

EX:- Net: : FTP for access to FTP servers

Some tasks may require a lower level of access to the network, and this is provided by Perl

both in the form of modules(e.g IO: : Socket) and at an even lower level by built-in functions.

Support for network programming in perl is so complete that you can use the language to write any

conceivable internet application Access to the internet at this level involves the use of sockets, and

we explain what a socket is before getting down to details of the programming. Sockets are network

communication channels, providing a bi- directional channel between processes on different

machines. Sockets were originally a feature of UNIX other UNIX systems adopted them and the

socket became the de facto mechanism of network communication in the UNIX world.

The popular Winsock provided similar functionality for Windows, allowing Windows systems to

communicate over the network with UNIX systems, and sockets are a built-in feature of Windows

9X and WindowsNT4.From the Perl programmer’s point a network socket can be treated like an

open file it is identified by a you write to it with print, and read it from operator. The socket

interface is based on the TCP/IP protocol suite, so that all information is handled automatically. In

http://www.somesite.com/index.html..%3B

SCRIPTING LANGUAGES M.TECH. II YEAR I SEM (R18)

57

TCP a reliable channel, with automatic recovery from data loss or corruption: for this reason a TCP

connection is often described as a virtual circuit. The socket in Perl is an exact mirror of the UNIX

and also permits connections using UDP(Unreliable Datagram Protocol).

SCRIPTING LANGUAGES M.TECH. II YEAR I SEM (R18)

58

UNIT-2
PHP Features

Every user has specific reasons for using PHP to implement a mission-critical application, although

one could argue that such motives tend to fall into four key categories: practicality, power,

possibility, and price.

Practicality

From the very start, the PHP language was created with practicality in mind. After all, Lerdorf’s

original intention was not to design an entirely new language, but to resolve a problem that had no

readily available solution. Furthermore, much of PHP’s early evolution was not the result of the

explicit intention to improve the language itself, but rather to increase its utility to the user. The

result is a language that allows the user to build powerful applications even with a minimum of

knowledge.

PHP is a loosely typed language, meaning there is no need to explicitly create, typecast, or destroy

a variable, although you are not prevented from doing so. PHP handles such matters internally,

creating variables on the fly as they are called in a script, and employing a best-guess formula for

automatically typecasting variables. For instance, PHP considers the following set of statements to

be perfectly valid:

<?php

$number = "5"; // $number is a string

$sum = 15 + $number; // Add an integer and string to produce integer

$sum = "twenty"; // Overwrite $sum with a string.

?>

PHP will also automatically destroy variables and return resources to the system when

the script completes.

Power

PHP developers have almost 200 native libraries containing well over 1,000 functions, in addition

to thousands of third-party extensions. Although you’re likely aware of PHP’s ability to interface

with databases, manipulate form information, and create pages dynamically, you might not know

that PHP can also do the following:

SCRIPTING LANGUAGES M.TECH. II YEAR I SEM (R18)

59

Create and manipulate Adobe Flash and Portable Document Format (PDF) files.

Evaluate a password for guess ability by comparing it to language dictionaries and easily broken

patterns. Parse even the most complex of strings using the POSIX and Perl-based regular

expression libraries. Authenticate users against login credentials stored in flat files, databases, and

even Microsoft’s Active Directory. Communicate with a wide variety of protocols, including

LDAP, IMAP, POP3, NNTP, and DNS, among others. Tightly integrate with a wide array of credit-

card processing solutions.

Possibility

PHP developers are rarely bound to any single implementation solution. On the contrary, a

user is typically fraught with choices offered by the language. For example, consider PHP’s array of

database support options. Native support is offered for more than 25 database products, including

Adabas D,dBase, Empress, FilePro, Front Base, Hyper wave, IBM DB2, Informix, Ingres,

InterBase, mSQL, Microsoft SQL Server, MySQL, Oracle, Ovrimos, PostgreSQL, Solid, Sybase,

Unix dbm, and Velocis.PHP’s flexible string-parsing capabilities offer users of differing skill sets

the opportunity to not only immediately begin performing complex string operations but also to

quickly port programs of similar functionality (such as Perl and Python) over to PHP.

Price

 PHP is available free of charge! Since its inception, PHP has been without usage,

modification, and redistribution restrictions. In recent years, software meeting such open licensing

qualifications has been referred to as open source software. Open source software and the Internet

go together like bread and butter. Open source projects such as Send mail, Bind, Linux, and Apache

all play enormous roles in the ongoing operations of the Internet at large. Although open source

software’s free availability has been the point most promoted by the media, several other

characteristics are equally important: Free of licensing restrictions imposed by most commercial

products:

Open source software users are freed of the vast majority of licensing restrictions one would expect

of commercial counterparts. Although some discrepancies do exist among license variants, users are

largely free to modify, redistribute, and integrate the software into other products. Open

development and auditing process: Although not without incidents, open source software has long

enjoyed a stellar security record. Such high-quality standards are a result of the open development

SCRIPTING LANGUAGES M.TECH. II YEAR I SEM (R18)

60

and auditing process. Because the source code is freely available for anyone to examine, security

holes and potential problems are rapidly found and fixed.

This advantage was perhaps best summarized by open source advocate Eric S. Raymond, who

wrote “Given enough eyeballs, all bugs are shallow.”Participation is encouraged: Development

teams are not limited to a particular organization. Anyone who has the interest and the ability is free

to join the project. The absence of member restrictions greatly enhances the talent pool for a given

project, ultimately contributing to a higher-quality product.

Embedding PHP Code in Your Web Pages

One of PHP’s advantages is that you can embed PHP code directly alongside HTML. The

engine needs some means to immediately determine which areas of the page are PHP-enabled. This

is logically accomplished by delimiting the PHP code. There are four delimitation variants. Default

Syntax

The default delimiter syntax opens with <?php and concludes with ?>, like this:

<h3>Welcome!</h3>

<?php

echo "<p>Some dynamic output here</p>";

?>

<p>Some static output here</p>

SCRIPTING LANGUAGES M.TECH. II YEAR I SEM (R18)

61

<?

print "This is another PHP example.";

?>

When short-tags syntax is enabled and you want to quickly escape to and from PHP to output a

bitof dynamic text, you can omit these statements using an output variation known as short- circuit

syntax:

<?="This is another PHP example.";?>

This is functionally equivalent to both of the following variations:

<? echo "This is another PHP example."; ?>

<?php echo "This is another PHP example.";?>

Script

Certain editors have historically had problems dealing with PHP’s more commonly used escape

syntax variants. Therefore, support for another mainstream delimiter variant, <script>, is offered:

<script language="php">

print "This is another PHP example.";

</script>

ASP Style

Microsoft ASP pages employ a delimiting strategy similar to that used by PHP, delimiting static

from dynamic syntax by using a predefined character pattern: opening dynamic syntax with <%,

and concluding with %>. If you’re coming from an ASP background and prefer to continue using

this escape syntax, PHP supports it. Here’s an example:

<%

print "This is another PHP example.";

%>

Embedding Multiple Code Blocks

You can escape to and from PHP as many times as required within a given page. For instance, the

following example is perfectly acceptable:

<html>

<head>

SCRIPTING LANGUAGES M.TECH. II YEAR I SEM (R18)

62

<title><?php echo "Welcome to my web site!";?></title>

</head>

<body>

<?php

$date = "July 26, 2010";

?>

<p>Today's date is <?=$date;?></p>

</body>

</html>

Outputting Data to the Browser The print() Statement

The print() statement outputs data passed to it . Its prototype looks like this: int print(argument)

All of the following are plausible print() statements:

<?php

print("<p>I love the summertime.</p>");

?>

<?php

$season = "summertime";

print "<p>I love the $season.</p>";

?>

<?php

print "<p>I love the summertime.</p>";

?>

All these statements produce identical output: I love the summertime.

The echo() Statement

Alternatively, you could use the echo() statement for the same purposes as

print().echo()’s prototype looks like this:

void echo(string argument1 [, ...string argumentN])

To use echo(), just provide it with an argument just as was done with print(): echo "I love

the summertime.";

SCRIPTING LANGUAGES M.TECH. II YEAR I SEM (R18)

63

As you can see from the prototype, echo() is capable of outputting multiple strings. Here’s an

example:

<?php

$heavyweight = "Lennox Lewis";

$lightweight = "Floyd Mayweather";

echo $heavyweight, " and ", $lightweight, " are great fighters.";

?>

This code produces the following

Lennox Lewis and Floyd May weather are great fighters. The printf() Statement

The printf() statement is ideal when you want to output a blend of static text and dynamic

information stored within one or several variables. It’s ideal for two reasons. First, it neatly

separates the static and dynamic data into two distinct sections, allowing for easy

maintenance.Second, printf() allows you to wield considerable control over how the dynamic

information is rendered to the screen in terms of its type, precision, alignment, and position.

Its prototype looks like this:

integer printf(string format [, mixed args])

For example, suppose you wanted to insert a single dynamic integer value into an otherwise static

string:

Printf ("Bar inventory: %d bottles of tonic water.” 100);

Executing this command produces the following: Bar inventory: 100 bottles of tonic water.

Commonly Used Type Specifies

%b Argument considered an integer; presented as a binary number

%c Argument considered an integer; presented as a character corresponding to that

ASCII value

%d Argument considered an integer; presented as a signed decimal number

%f Argument considered a floating-point number; presented as a floating-point

number

%o Argument considered an integer; presented as an octal number

%s Argument considered a string; presented as a string

SCRIPTING LANGUAGES M.TECH. II YEAR I SEM (R18)

64

%u Argument considered an integer; presented as an unsigned decimal number

%x Argument considered an integer; presented as a lowercase hexadecimal number

%X Argument considered an integer; presented as an uppercase

hexadecimal number The sprintf() Statement

The sprintf() statement is functionally identical to printf() except that the output is assigned to a

string rather than rendered to the browser. The prototype follows:

 string sprintf(string format [, mixed arguments]) An example follows:

 $cost = sprintf("$%.2f", 43.2); // $cost = $43.20.

PHP’s Supported Data Types

A datatype is the generic name assigned to any data sharing a common set of characteristics.

Common data types include Boolean, integer, float, string, and array.

Scalar Data Types

Scalar data types are used to represent a single value. Several data types fall under this category,

including Boolean, integer, float, and string.

Boolean

The Boolean datatype is named after George Boole (1815–1864), a mathematician who is

considered to be one of the founding fathers of information theory. The Boolean data type

represents truth, supporting only two values: TRUE and FALSE (case insensitive). Alternatively,

you can use zero to represent FALSE, and any nonzero value to represent TRUE.

A few examples follow:

$alive = false; // $alive is false.

$alive = 1; // $alive is true.

$alive = -1; // $alive is true.

$alive = 5; // $alive is true.

$alive = 0; // $alive is false.

Integer

An integer is representative of any whole number or, in other words, a number that does not contain

fractional parts. PHP supports integer values represented in base 10 (decimal), base 8octal), and

base 16 (hexadecimal) numbering systems. Several examples follow

SCRIPTING LANGUAGES M.TECH. II YEAR I SEM (R18)

65

42 // decimal

-678900 // decimal

0755 // octal

0xC4E // hexadecimal

The maximum supported integer size is platform-dependent, although this is typically positive or

negative 2^31 for PHP version 5 and earlier. PHP 6 introduced a 64-bit integer value, meaning PHP

will support integer values up to positive or negative 2^63 in size.

Float

Floating-point numbers, also referred to as floats, doubles, or real numbers, allow you to specify

numbers that contain fractional parts. Floats are used to represent monetary values, weights,

distances, and a whole host of other representations in which a simple integer value won’t suffice.

PHP’s floats can be specified in a variety of ways, several of which are demonstrated here:

4.5678

4.0

e4

1.23E+11

String

Simply put, a string is a sequence of characters treated as a contiguous group. Strings are delimited

by single or double quotes. The following are all examples of valid strings: "PHP is a great

language"

"whoop-de-do" '*9subway\n' "123$%^789" For example, consider the following string:

$color = "maroon";

You could retrieve a particular character of the string by treating the string as an array, like this:

$parser = $color[2]; // Assigns 'r' to $parser

Compound Data Types

Compound data types allow for multiple items of the same type to be aggregated under a single

representative entity. The array and the object fall into this category.

Array

It’s often useful to aggregate a series of similar items together, arranging and referencing them in

some specific way. This data structure, known as an array, is formally defined as an indexed

SCRIPTING LANGUAGES M.TECH. II YEAR I SEM (R18)

66

collection of data values. Each member of the array index (also known as the key) references a

corresponding value and can be a simple numerical reference to the value’s position in the series, or

it could have some direct correlation to the value.

For example, if you were interested in creating a list of U.S. states, you could use a numerically

indexed array, like so:

$state[0] = "Alabama";

$state[1] = "Alaska";

$state[2] = "Arizona";

...

$state[49] = "Wyoming";

But what if the project required correlating U.S. states to their capitals? Rather than base

the keys on a numerical index, you might instead use an associative index, like this:

$state["Alabama"] = "Montgomery";

$state["Alaska"] = "Juneau";

$state["Arizona"] = "Phoenix";...

$state["Wyoming"] = "Cheyenne";

Object

The other compound data type supported by PHP is the object. The object is a central concept of the

object-oriented programming paradigm. Unlike the other data types contained in the PHP language,

an object must be explicitly declared. This declaration of an object’s characteristics and behavior

takes place within something called a class.Here’s a general example of a class definition and

subsequent invocation:

class Appliance {

private $_power;

function setPower($status) {

$this->_power = $status;

}

}

...

$blender = new Appliance;

SCRIPTING LANGUAGES M.TECH. II YEAR I SEM (R18)

67

A class definition creates several attributes and functions pertinent to a data structure, in this case a

data structure named Appliance. There is only one attribute, power, which can be modified by using

the method setPower().

Remember, however, that a class definition is a template and cannot itself be manipulated. Instead,

objects are created based on this template. This is accomplished via the new keyword. Therefore, in

the last line of the previous listing, an object of class Appliance named blender is created.

The blender object’s power attribute can then be set by making use of the method setPower():

$blender->setPower("on");

Converting Between Data Types Using Type Casting

Converting values from one data type to another is known as type casting. A variable can be

evaluated once as a different type by casting it to another. This is accomplished by placing the

intended type in front of the variable to be cast.

Cast Operators Conve

(array) Array

(bool) or (boolean) Boole

(int) or (integer) Intege

(object) Object

(real) or (double) or (float) Float

(string) String

Let’s consider several examples. Suppose you’d like to cast an integer as a double:

$score = (double) 13; // $score = 13.0

Type casting a double to an integer will result in the integer value being rounded down, regardless

of the decimal value. Here’s an example:

$score = (int) 14.8; // $score = 14

What happens if you cast a string datatype to that of an integer? Let’s find out:

$sentence = "This is a sentence"; echo (int) $sentence; // returns 0

While likely not the expected outcome, it’s doubtful you’ll want to cast a string like this anyway.

You can also cast a datatype to be a member of an array. The value being cast simply becomes the

SCRIPTING LANGUAGES M.TECH. II YEAR I SEM (R18)

68

first element of the array:

$score = 1114;

$scoreboard = (array) $score;

echo $scoreboard[0]; // Outputs 1114

One final example: any data type can be cast as an object. The result is that the variable becomes an

attribute of the object, the attribute having the name scalar:

$model = "Toyota";

$obj = (object) $model;

The value can then be referenced as follows: print $obj->scalar; // returns "Toyota" Adapting Data

Types with Type Juggling

Because of PHP’s lax attitude toward type definitions, variables are sometimes automatically cast to

best fit the circumstances in which they are referenced. Consider the following snippet:

<?php

$total = 5; // an integer

$count = "15"; // a string

$total += $count; // $total = 20 (an integer)

?>

The outcome is the expected one; $total is assigned 20, converting the $count variable from a string

to an integer in the process. Here’s another example demonstrating PHP’s type-juggling

capabilities:

<?php

$total = "45 fire engines";

$incoming = 10;

$total = $incoming + $total; // $total = 55

?>

The integer value at the beginning of the original $total string is used in the calculation. However, if

it begins with anything other than a numerical representation, the value is 0.

Consider another example:

<?php

SCRIPTING LANGUAGES M.TECH. II YEAR I SEM (R18)

69

$total = "1.0";

if ($total) echo "We're in positive territory!";

?>

In this example, a string is converted to Boolean type in order to evaluate the if statement

Consider one last particularly interesting example. If a string used in a mathematical calculation

includes ., e, or E (representing scientific notation), it will be evaluated as a float:

<?php

$val1 = "1.2e3"; // 1,200

$val2 = 2;

echo $val1 * $val2; // outputs 2400

?>

Type-Related Functions

A few functions are available for both verifying and converting data types. Retrieving Types

The gettype() function returns the type of the provided variable. In total, eight possible return

values are available: array, boolean, double, integer, object, resource, string, and unknown type. Its

prototype follows:string gettype(mixed var)

Converting Types

The settype() function converts a variable to the type specified by type. Seven possible type values

are available: array, boolean, float, integer, null, object, and string. If the conversion is successful,

TRUE is returned; otherwise, FALSE is returned. Its prototype follows:boolean settype(mixed var,

string type

Type Identifier FunctionsA number of functions are available for determining a variable’s type,

including is_array(), is_bool(),is_float(), is_integer(), is_null(), is_numeric(), is_object(),

is_resource(), is_scalar(), and is_string(). Because all of these functions follow the same naming

convention, arguments, and return values, their introduction is consolidated into a single

example.The generalized prototype follows:

boolean is_name(mixed var)

All of these functions are grouped in this section because each ultimately accomplishes the same

task. Each determines whether a variable, specified by var, satisfies a particular condition specified

by the function name. If var is indeed of the type tested by the function name, TRUE is returned;

SCRIPTING LANGUAGES M.TECH. II YEAR I SEM (R18)

70

otherwise, FALSE is returned.

An example follows:

<?php

$item = 43;

printf("The variable \$item is of type array: %d
", is_array($item)); printf("The variable

\$item is of type integer: %d
", is_integer($item)); printf("The variable \$item is numeric: %d

", is_numeric($item));?>

This code returns the following:

The variable $item is of type array: 0 The variable $item is of type integer: 1 The variable

$item is numeric: 1

Identifiers

Identifier is a general term applied to variables, functions, and various other user-defined objects.

There are several properties that PHP identifiers must abide by:

An identifier can consist of one or more characters and must begin with a letter or an underscore.

Furthermore, identifiers can consist of only letters, numbers, underscore characters, and other

ASCII characters from 127 through 255.

Valid Invalid

my_function This&that

Size !counter

_someword 4ward

 Identifiers are case sensitive. Therefore, a variable named $recipe is different from a variable

named $Recipe, $rEciPe, or $recipE.

 Identifiers can be any length. This is advantageous because it enables a programmer

to accurately describe the identifier’s purpose via the identifier name.

 An identifier name can’t be identical to any of PHP’s predefined keywords.

Variables

A variable is a symbol that can store different values at different times. For example, suppose you

create a web-based calculator capable of performing mathematical tasks.

SCRIPTING LANGUAGES M.TECH. II YEAR I SEM (R18)

71

Variable Declaration

A variable always begins with a dollar sign, $, which is then followed by the variable name.

Variable names follow the same naming rules as identifiers.

That is, a variable name can begin with either a letter or an underscore and can consist of letters,

underscores, numbers, or other ASCII characters rangingfrom 127 through 255. The following

are all valid variables:

$color

$operating_system

$_some_variable

$model

Note that variables are case sensitive. For instance, the following variables bear no relation to one

another:

$color

$Color

$COLOR

Value Assignment

Assignment by value simply involves copying the value of the assigned expression to the variable

assignee. This is the most common type of assignment. A few examples follow:

$color = "red";

$number = 12;

$age = 12;

$sum = 12 + "15"; // $sum = 27.

Reference Assignment

PHP 4 introduced the ability to assign variables by reference, which essentially means that you can

create a variable that refers to the same content as another variable does. Therefore, a change to any

variable referencing a particular item of variable content will be reflected among all other variables

referencing that same content. You can assign variables by reference by appending an ampersand

(&) to the equal sign. Let’s consider an example:

SCRIPTING LANGUAGES M.TECH. II YEAR I SEM (R18)

72

<?php

$value1 = "Hello";

$value2 =& $value1; // $value1 and $value2 both equal "Hello"

$value2 = "Goodbye"; // $value1 and $value2 both equal "Goodbye"

?>

An alternative reference-assignment syntax is also supported, which involves appending the

ampersand to the front of the variable being referenced. The following example adheres to this new

syntax

<?php

$value1 = "Hello";

$value2 = &$value1; // $value1 and $value2 both equal "Hello"

$value2 = "Goodbye"; // $value1 and $value2 both equal "Goodbye"

?>

Variable Scope

Scope can be defined as the range of availability a variable has to the program in which it is

declared. PHP variables can be one of four scope types Local variables Function parameters Global

variables Static variables

Local Variables

A variable declared in a function is considered local; that is, it can be referenced solely in that

function. Any assignment outside of that function will be considered to be an entirely different

variable from the one contained in the function

<?php

$x = 4;

function assignx ()

{

$x = 0;

print "\$x inside function is $x.
";

}

assignx();

http://www.tutorialspoint.com/php/php_local_variables.htm
http://www.tutorialspoint.com/php/php_function_parameters.htm
http://www.tutorialspoint.com/php/php_global_variables.htm
http://www.tutorialspoint.com/php/php_global_variables.htm
http://www.tutorialspoint.com/php/php_static_variables.htm

SCRIPTING LANGUAGES M.TECH. II YEAR I SEM (R18)

73

print "\$x outside of function is $x.
";

?>

This will produce the following result

$x inside function is 0.

$x outside of function is 4.

Function Parameters

Function parameters are declared after the function name and inside parentheses. They are declared

much like a typical variable would be

<?php// multiply a value by 10 and return it to the caller function multiply ($value)

{

$value = $value * 10; return $value;

}

$retval = multiply (10);

Print "Return value is $retval\n";

?>

This will produce the following result − Return value is 100

Global Variables

In contrast to local variables, a global variable can be accessed in any part of the program.

However, in order to be modified, a global variable must be explicitly declared to be global in the

function in which it is to be modified. This is accomplished, conveniently enough, by placing the

keyword GLOBAL in front of the variable that should be recognized as global. Placing this

keyword in front of an already existing variable tells PHP to use the variable having that name.

Consider an example

<?php

$somevar = 15

Function addit()

{

 GLOBAL $somevar;$somevar++;print "Somevar is

$somevar";

SCRIPTING LANGUAGES M.TECH. II YEAR I SEM (R18)

74

}

addit();

?>

This will produce the following result − Somevar is 16

Static Variables

The final type of variable scoping that I discuss is known as static. In contrast to the variables

declared as function parameters, which are destroyed on the function's exit, a static variable will not

lose its value when the function exits and will still hold that value should the function be called

again.

You can declare a variable to be static simply by placing the keyword STATIC in front of the

variable name

<?php

function keep_track() { STATIC $count = 0;

$count++; print $count; print "
";

}

keep_track(); keep_track(); keep_track();

?>

This will produce the

following result – 1 2

3

PHP’s Super global Variables

PHP offers a number of useful predefined variables that are accessible from anywhere within the

executing script and provide you with a substantial amount of environment-specific information.

You can sift through these variables to retrieve details about the current user session, the user’s

operating environment, the local operating environment, and more. PHP creates some of the

variables, while the availability and value of many of the other variables are specific to the

operating system and web server.

Therefore, rather than attempt to assemble a comprehensive list of all possible predefined variables

SCRIPTING LANGUAGES M.TECH. II YEAR I SEM (R18)

75

and their possible values, the following code will output all predefined variables pertinent to any

given web server and the script’s execution environment:

foreach ($_SERVER as $var => $value)

{

echo "$var => $value
";

}

S.No Variable & Description

1

$_GLOBALS: Contains a reference to every variable which is currently

available within the global scope of the script. The keys of this array are

the names of the global variables.

2
$_SERVER: This is an array containing information such as headers,

paths, and script locations. The entries in this array are created by the

web server. There is no guarantee that every web server will provide any

of these. See next section for a complete list of all the SERVER

variables.

3 $_GET: An associative array of variables passed to the current script via

the HTTP GET method.

4 $_POST: An associative array of variables passed to the current script

via the HTTP POST method.

5 $_FILES: An associative array of items uploaded to the current script

via the HTTP POST method.

6 $_REQUEST: An associative array consisting of the contents of

$_GET,

$_POST, and

$_COOKIE.

SCRIPTING LANGUAGES M.TECH. II YEAR I SEM (R18)

76

7 $_COOKIE: An associative array of variables passed to the current

script via HTTP cookies.

8 $_SESSION: An associative array containing session variables available

to the current script.

9 $_PHP_SELF: A string containing PHP script file name in which it is

called.

10 $php_errormsg: $php_errormsg is a variable containing the text of the

last error message generated by PHP.

Variable Variables
On occasion, you may want to use a variable whose content can be treated dynamically as avariable

in itself. Consider this typical variable assignment$recipe = "spaghetti";Interestingly, you can treat

the value spaghetti as a variable by placing a second dollar sign in front of the original variable

name and again assigning another value $$recipe = "& meatballs";

This in effect assigns & meatballs to a variable named spaghetti. Therefore, the following

two snippets of code produce the same result

echo $recipe $spaghetti; echo $recipe ${$recipe}; The result of both is the string spaghetti &

meatballs.

Constants

A constant is a value that cannot be modified throughout the execution of a program. Constants are

particularly useful when working with values that definitely will not require modification, such as

Pi (3.141592) or the number of feet in a mile (5,280). Once a constant has been defined, it cannot

be changed (or redefined) at any other point of the program. Constants are defined using the

define() function.

Defining a Constant

SCRIPTING LANGUAGES M.TECH. II YEAR I SEM (R18)

77

The define() function defines a constant by assigning a value to a name. Its prototype follows:

boolean define(string name, mixed value [, bool case_insensitive])If the optional parameter

case_insensitive is included and assigned TRUE, subsequent references to the constant will be case

insensitive. Consider the following example in which the mathematical constant Pi is

defined:define("PI", 3.141592);The constant is subsequently used in the following listing:

printf("The value of Pi is %f", PI);

$pi2 = 2 * PI;

printf("Pi doubled equals %f", $pi2); This code produces the following results:

The value of pi is 3.141592. Pi doubled equals 6.283184.

Expressions

An expression is a phrase representing a particular action in a program. All expressions consist of at

least one operand and one or more operators.

A few examples follow:

$a = 5; // assign integer value 5 to the variable $a

$a = "5"; // assign string value "5" to the variable $a

$sum = 50 + $some_int; // assign sum of 50 + $some_int to $sum

$wine = "Zinfandel"; // assign "Zinfandel" to the variable $wine

$inventory++; // increment the variable $inventory by 1

Operands

Operands are the inputs of an expression. You might already be familiar with the manipulation and

use of operands not only through everyday mathematical calculations, but also through prior

programming experience. Some examples of operands follow:

$a++; // $a is the operand

$sum = $val1 + val2; // $sum, $val1 and $val2 are operands

Operators

An operator is a symbol that specifies a particular action in an expression. Many operators may be

familiar to you. Regardless, you should remember that PHP’s automatic type conversion will

convert types based on the type of operator placed between the two operands, which is not always

SCRIPTING LANGUAGES M.TECH. II YEAR I SEM (R18)

78

the case in other programming languages. The precedence and associativity of operators are

significant characteristics of a programming language. Operator Precedence, Associativity, and

Purpose.

Operator Associativity Purpose

new NA Object instantiation

() NA Expression sub grouping

[] Right Index enclosure

! ~ ++ -- Right Boolean NOT, bitwise NOT,

 increment,

@ Right Error suppression

/ * % Left Division, multiplication, modulus

+ - . Left Addition, subtraction, concatenation

<< >> Left Shift left, shift right (bitwise)

< <= > >= NA Less than, less than or equal to,

greater than,

== != === <> NA Is equal to, is not equal to, is identical

to, is

& ^ | Left Bitwise AND, bitwise XOR, bitwise

OR

&& || Left Boolean AND, Boolean OR

?: Right Ternary operator

= += *= /= .=

%=&=

Right Assignment operators

AND XOR OR Left Boolean AND, Boolean XOR,

Boolean OR

, Left Expression separation

Operator Precedence

Operator precedence is a characteristic of operators that determines the order in which they evaluate the

operands surrounding them. PHP follows the standard precedence rules used in elementary school math

class. Consider a few examples:

$total_cost = $cost + $cost * 0.06; This is the same as writing

$total_cost = $cost + ($cost * 0.06);

SCRIPTING LANGUAGES M.TECH. II YEAR I SEM (R18)

79

Because the multiplication operator has higher precedence than the addition operator.

Operator Associativity

The associativity characteristic of an operator specifies how operations of the same precedence are evaluated

as they are executed. Associativity can be performed in two directions, left-to- right or right-to-left. Left-to-

right associativity means that the various operations making up the expression are evaluated from left to

right.

Consider the following example:

$value = 3 * 4 * 5 * 7 * 2;

The preceding example is the same as the following:

$value = ((((3 * 4) * 5) * 7) * 2); Arithmetic Operators

There are following arithmetic operators supported by PHP language − Assume variable A holds 10 and

variable B holds 20 then

Operator Description Example

+ Adds two operands A + B will give 30

- Subtracts second

operand from

A - B will give -10

* Multiply both
operands

A * B will give 200

/ Divide numerator by
de-

B / A will give 2

% Modulus Operator and

 remainder of after an

B % A will give 0

++ Increment operator,

increases integer

value by

A++ will give 11

-- Decrement operator,

decreases integer value

by one

A-- will give 9

Assignment Operators

There are following assignment operators supported by PHP language

SCRIPTING LANGUAGES M.TECH. II YEAR I SEM (R18)

80

Operator Description Example

=

Simple assignment

operator, Assigns values

from right side operands

to left side operand

C = A + B will assign

value of A + B into C

+=

Add AND assignment

operator, It adds right

operand to the left

operand and assign the

result to left operand

C += A is equivalent to

C = C + A

-=

Subtract AND assignment

operator, It subtracts right

operand from the left

operand and assign the

result to left operand

C -= A is equivalent to C

= C - A

*=

Multiply AND assignment

operator, It multiplies

right operand with the left

operand and assign the

result to left operand

C *= A is equivalent to C

= C * A

/=

Divide AND assignment

operator, It divides left

operand with the right

operand and assign the

result to left operand

C /= A is equivalent to C

= C / A

Operator Description Example

=

Simple assignment

operator, Assigns values

from right side operands

to left side operand

C = A + B will assign value

of A + B into C

SCRIPTING LANGUAGES M.TECH. II YEAR I SEM (R18)

81

+=

Add AND assignment

operator, It adds right

operand to the left

operand and assign the

result to left operand

C += A is equivalent to C =

C + A

-=

Subtract AND assignment

operator, It subtracts right

operand from the left

operand and assign the

result to left operand

C -= A is equivalent to C =

C - A

*=

Multiply AND assignment

operator, It multiplies

right operand with the left

operand and assign the

result to left operand

C *= A is equivalent to C =

C * A

/=

Divide AND assignment

operator, It divides left

operand with the right

operand and assign the

result to left operand

C /= A is equivalent to C =

C / A

String Operators

PHP’s string operators provide a convenient way in which to concatenate strings together. There are

two such operators, including the concatenation operator (.) and the concatenation assignment

operator (.=).

Example Label Outcome

$a = "abc"."def"; Concatenation $a is assigned

 the string

"abcdef"

$a .= "ghijkl"; Concatenation-assignment $a equals its current value

concatenated with "ghijkl"

SCRIPTING LANGUAGES M.TECH. II YEAR I SEM (R18)

82

Increment and Decrement Operators

The increment (++) and decrement (--) operators present a minor convenience in terms of code

clarity, providing shortened means by which you can add 1 to or subtract 1 from the current value

of a variable.

Logical Operators

There are following logical operators supported by PHP language Assume variable A holds 10 and

variable B holds 20 then

Operator Description Example

and

Called Logical AND operator. If

both the operands are true then

condition becomes true.

(A and B) is true.

or

Called Logical OR Operator. If

any of the two operands are non

zero then condition becomes

true.

(A or B) is true.

&&

Called Logical AND operator. If

both the operands are non zero

then condition becomes true.

(A && B) is true.

||

Called Logical OR Operator. If

any of the two operands are non

zero then condition becomes

true.

(A || B) is true.

!

Called Logical NOT Operator.

Use to reverses the logical state

of its operand. If a condition is

true then Logical NOT operator

!(A && B) is false.

Equality Operators

Equality operators are used to compare two values, testing for equivalence.

Example Label Outcome

$a == $b Is equal to True if $a and $b are

equivalent

SCRIPTING LANGUAGES M.TECH. II YEAR I SEM (R18)

83

$a != $b Is not equal to True if $a is not equal to $b

$a === Is identical to True if $a and $b are

equivalent

Comparison Operators

There are following comparison operators supported by PHP language Assume variable A holds 10

and variable B holds 20 then

Operatorr Description Example

==

Checks if the value of two

operands are equal or not, if yes

then condition becomes true.

(A == B) is not true.

!=

Checks if the value of two

operands are equal or not, if

values are not equal then

(A != B) is true.

>

Checks if the value of left

operand is greater than the value

of right operand, if yes then

condition becomes true.

(A > B) is not true.

<

Checks if the value of left

operand is less than the value of

right operand, if yes then

condition becomes true.

(A < B) is true.

>=

Checks if the value of left

operand is greater than or equal

to the value of right operand, if

yes then condition becomes true.

(A >= B) is not true.

<=

Checks if the value of left

operand is less than or equal to

the value of right operand, if yes

then condition becomes true.

(A <= B) is true.

Bitwise Operators

Bitwise operators examine and manipulate integer values on the level of individual bits that make

up the integer value (thus the name).

SCRIPTING LANGUAGES M.TECH. II YEAR I SEM (R18)

84

Example Label Outcome

$a & $b AND And together each bit contained in $a and $b

$a | $b OR Or together each bit contained in $a and $b

$a ^ $b XOR Exclusive—or together each bit contained in

$a and $b

~ $b NOT Negate each bit in $b

$a << $b Shift left $a will receive the value of $b shifted left two bits

$a >> $b Shift right $a will receive the value of $b shifted right two

bits

String Interpolation

To offer developers the maximum flexibility when working with string values, PHP offers a means

for both literal and figurative interpretation. For example, consider the following string

The $animal jumped over the wall. You might assume that $animal is a variable and that \n is a

newline character, and therefore both should be interpreted accordingly. However, what if you want

to output the string exactly as it is written, or perhaps you want the newline to be rendered but want

the variable to display in its literal form ($animal), or vice versa? All of these variations are

possible in PHP, depending on how the strings are enclosed and whether certain key characters are

escaped through a predefined sequence.

Double Quotes Strings enclosed in double quotes are the most commonly used in PHP scripts

because they offer the most flexibility. This is because both variables and escape sequences will be

parsed accordingly. Consider the following example

<?php

$sport = "boxing";

echo "Jason's favorite sport is $sport.";

SCRIPTING LANGUAGES M.TECH. II YEAR I SEM (R18)

85

?>

This example returns the following: Jason's favorite sport is boxing.

Escape Sequences

Escape sequences are also parsed. Consider this example:

<?php

$output = "This is one line.\nAnd this is another line."; echo $output;

?>

This returns the following (as viewed from within the browser source): This is one line. And this is

another line.

Single Quotes

Enclosing a string within single quotes is useful when the string should be interpreted exactly as

stated. This means that both variables and escape sequences will not be interpreted when the string

is parsed.

For example, consider the following single-quoted string: print 'This string will $print exactly as

it\'s \n declared.';

This produces the following:

This string will $print exactly as it's \n declared.

Curly Braces

While PHP is perfectly capable of interpolating variables representing scalar data types, you’ll

find that variables representing complex data types such as arrays or objects cannot be so easily

parsed when embedded in an echo() or print() string. You can solve this issue by delimiting the

variable in curly braces, like this:

echo "The capital of Ohio is {$capitals['ohio']}.";

SCRIPTING LANGUAGES M.TECH. II YEAR I SEM (R18)

86

Heredoc

Heredoc syntax offers a convenient means for outputting large amounts of text. Rather than

delimiting strings with double or single quotes, two identical identifiers are employed. An example

follows:

<?php

$website = "http://www.romatermini.it"; echo <<<EXCERPT

<p>Rome's central train station, known as Roma Termini, was built in

1867. Because it had fallen into severe disrepair in the late 20th century, the government knew that

considerable resources were required to rehabilitate the station prior to the 50-year

<i>Giubileo</i>.</p>

EXCERPT;

?>

Several points are worth noting regarding this example:

The opening and closing identifiers (in the case of this example, EXCERPT) must be identical.The

opening identifier must be preceded with three left-angle brackets (<<<).Heredoc syntax follows

the same parsing rules as strings enclosed in double quotes. That is, both variables and escape

sequences are parsed. The only difference is that double quotes do not need to be escaped.The

closing identifier must begin at the very beginning of a line. It cannot be preceded with spaces or

any other extraneous character.

Nowdoc

Introduced in PHP 5.3, nowdoc syntax operates identically to heredoc syntax, except that none of

the text delimited within a nowdoc is parsed. If you would like to display, for instance, a snippet of

code in the browser, you could embed it within a nowdoc statement; when subsequently outputting

the nowdoc variable, you can be sure that PHP will not attempt to interpolate any of the string as

code.

http://www.romatermini.it/

SCRIPTING LANGUAGES M.TECH. II YEAR I SEM (R18)

87

Control Structures

Control structures determine the flow of code within an application, defining execution

characteristics such as whether and how many times a particular code statement will execute, as

well as when a code block will relinquish execution control.

Conditional Statements

Conditional statements make it possible for your computer program to respond accordingly to a

wide variety of inputs, using logic to discern between various conditions based on input value. You

can use conditional statements in your code to make your decisions. PHP supports following three

decision making statements

if...else statement − use this statement if you want to execute a set of code when a condition is true

and another if the condition is not true

elseif statement − is used with the if...else statement to execute a set of code if one of the several

condition is true

switch statement − is used if you want to select one of many blocks of code to be executed, use the

Switch statement. The switch statement is used to avoid long blocks of if..elseif..else code.

SCRIPTING LANGUAGES M.TECH. II YEAR I SEM (R18)

88

The If...Else Statement

If you want to execute some code if a condition is true and another code if a condition is false, use

the if. else statement.

Syntax

if (condition)

code to be executed if condition is true; else

code to be executed if condition is false;

Example

The following example will output "Have a nice weekend!" if the current day is Friday, Otherwise,

it will output "Have a nice day!":

<html>

<body>

<?php

$d = date("D");

if ($d == "Fri")

echo "Have a nice weekend!"; else

echo "Have a nice day!";

?>

</body>

</html>

It will produce the following result − Have a nice day!

The ElseIf Statement

If you want to execute some code if one of the several conditions are true use the elseif statement

SCRIPTING LANGUAGES M.TECH. II YEAR I SEM (R18)

89

Syntax

if (condition)

code to be executed if condition is true; elseif (condition)

code to be executed if condition is true; else

code to be executed if condition is false;

Example

The following example will output "Have a nice weekend!" if the current day is Friday, and "Have

a nice Sunday!" if the current day is Sunday. Otherwise, it will output "Have a nice day!"’

<html>

<body>

<?php

$d = date("D");

if ($d == "Fri")

echo "Have a nice weekend!"; elseif ($d == "Sun")

echo "Have a nice Sunday!"; else

echo "Have a nice day!";

?>

</body>

</html>

It will produce the following result − Have a nice day!

The Switch Statement

SCRIPTING LANGUAGES M.TECH. II YEAR I SEM (R18)

90

If you want to select one of many blocks of code to be executed, use the Switch statement. The

switch statement is used to avoid long blocks of if..elseif..else code.

Syntax

switch (expression)

{

case label1:

code to be executed if expression = label1; break;

case label2:

code to be executed if expression = label2; break;

default:code to be executed

if expression is different from both label1 and label2;

}

Example

The switch statement works in an unusual way. First it evaluates given expression then seeks a label

to match the resulting value. If a matching value is found then the code associated with the

matching label will be executed or if none of the label matches then statement will execute any

specified default code.

<html>

<body>

<?php

$d = date("D"); switch ($d)

{

case "Mon":

echo "Today is Monday"; break; case "Tue":

SCRIPTING LANGUAGES M.TECH. II YEAR I SEM (R18)

91

echo "Today is Tuesday"; break; case "Wed":

echo "Today is Wednesday"; break; case "Thu":

echo "Today is Thursday"; break;

case "Fri":

echo "Today is Friday"; break; case "Sat":

echo "Today is Saturday"; break; case "Sun":

echo "Today is Sunday"; break; default:

echo "Wonder which day is this ?";

}

?>

</body>

</html>

It will produce the following result − Today is Wednesday

Looping Statements

Loops in PHP are used to execute the same block of code a specified number of times. PHP

supports following four loop types.

For − loops through a block of code a specified number of times.

While − loops through a block of code if and as long as a specified condition is true. do...while

loops through a block of code once, and then repeats the loop as long as a special condition is true.

SCRIPTING LANGUAGES M.TECH. II YEAR I SEM (R18)

92

for each − loops through a block of code for each element in an arrayThe for loop statement The

for statement is used when you know how many times you want to execute a statement or a block

of statements.

Syntax

for (initialization; condition; increment)

{

code to be executed;

}

Example

The following example makes five iterations and changes the assigned value of two variables on

each pass of the loop

<html>

<body>

<?php

SCRIPTING LANGUAGES M.TECH. II YEAR I SEM (R18)

93

$a = 0;

$b = 0;

for($i = 0; $i<5; $i++)

{

$a += 10;

$b += 5;

}

echo ("At the end of the loop a = $a and b = $b");

?>

</body>

</html>

This will produce the following result – At the end of the loop a = 50 and b = 25

The while loop statement

The while statement will execute a block of code

the test expression is true then the code block will be executed. After the code has executed the test

expression will again be evaluated and the loop will continue until the test expression is found to be

false.

Syntax

while (condition)

{

code to be executed;

}

Example

SCRIPTING LANGUAGES M.TECH. II YEAR I SEM (R18)

94

This example decrements a variable value on each iteration of the loop and the counter increments

until it reaches 10 when the evaluation is false and the loop ends.

<html>

<body>

<?php

$i = 0;

$num = 50; while($i < 10)

{

$num--;

$i++;

}

echo ("Loop stopped at i = $i and num = $num");

?>

</body>

</html>

This will produce the following result – Loop stopped at i = 10 and num = 40

The do...while loop statement

The do...while statement will execute a block of code at least once it then will repeat the loop as

long as a condition is true.

Syntax

do

{

SCRIPTING LANGUAGES M.TECH. II YEAR I SEM (R18)

95

code to be executed;

}

while (condition);

Example

The following example will increment the value of i at least once, and it will continue incrementing

the variable i as long as it has a value of less than 10

<html>

<body>

<?php

$i = 0;

$num = 0; do

{

$i++;

}

while($i < 10);

echo ("Loop stopped at i = $i");

?>

</body>

</html>

This will produce the following result − Loop stopped at i = 10

The foreach loop statement

SCRIPTING LANGUAGES M.TECH. II YEAR I SEM (R18)

96

The foreach statement is used to loop through arrays. For each pass the value of the current array

element is assigned to $value and the array pointer is moved by one and in the next pass next

element will be processed.

Syntax

foreach (array as value)

{

code to be executed;

}

Example

Try out following example to list out the values of an array.

<html>

<body>

<?php

$array = array(1, 2, 3, 4, 5); foreach($array as $value)

{

echo "Value is $value
";

}

?>

</body>

</html>

This will produce the following result – Value is 1

Value is 2

SCRIPTING LANGUAGES M.TECH. II YEAR I SEM (R18)

97

Value is 3

Value is 4

Value is 5

BREAK statement :The PHP break keyword is used to terminate the execution of a loop

prematurely. The break statement is situated inside the statement block. If gives you full control and

whenever you want to exit from the loop you can come out. After coming out of a loop immediate

statement to the loop will be executed.

Example

In the following example condition test becomes true when the counter value reaches 3 and loop

terminates.

<html>

<body>

<?php

$i = 0;

SCRIPTING LANGUAGES M.TECH. II YEAR I SEM (R18)

98

while($i < 10)

{

$i++;

if($i == 3)break;

}

echo ("Loop stopped at i = $i");

?>

</body>

</html>

This will produce the following result – Loop stopped at i = 3.

Continue statement The PHP continue keyword is used to halt the current iteration of a loop but it

does not terminate the loop. Just like the break statement the continue statement is situated inside

the statement block containing the code that the loop executes, preceded by a conditional test. For

the pass encountering continue statement, rest of the loop code is skipped and next pass starts.

SCRIPTING LANGUAGES M.TECH. II YEAR I SEM (R18)

99

Example

In the following example loop prints the value of array but for which condition becomes true it just

skip the code and next value is printed.

<html>

<body>

<?php

$array = array(1, 2, 3, 4, 5); foreach($array as $value)

{

if($value == 3)continue; echo "Value is $value
";

}

?>

</body>

</html>

This will produce

the following result

– Value is 1

Value is 2

Value is 4

Value is 5

File Inclusion statements

You can include the content of a PHP file into another PHP file before the server executes it. There

are two PHP functions which can be used to included one PHP file into another PHP file. The

include() Function The require() Function This is a strong point of PHP which helps in creating

functions, headers, footers, or elements that can be reused on multiple pages. This will help

developers to make it easy to change the layout of complete website with minimal effort. If there is

any change required then instead of changing thousand of files just change included file. The

SCRIPTING LANGUAGES M.TECH. II YEAR I SEM (R18)

100

include() Function The include() function takes all the text in a specified file and copies it into the

file that uses the include function. If there is any problem in loading a file then the include()

function generates a warning but the script will continue execution. Assume you want to create a

common menu for your website. Then create a file menu.php with the following content.

Home -

ebXML -

AJAX -

PERL

Now create as many pages as you like and include this file to create header. For example now your

test.php file can have following content.

<html>

<body>

<?php include("menu.php"); ?>

<p>This is an example to show how to include PHP file!</p>

</body>

</html>

It will produce the following result – Home - ebXML - AJAX - PERL

Ensuring a File is included only once:

Functions

Creating a Function

Although PHP’s vast assortment of function libraries is a tremendous benefit to anybody seeking to

avoid reinventing the programmatic wheel, sooner or later you’ll need to go beyond what is offered

in the standard distribution, which means you’ll need to create custom functions or even entire

http://www.tutorialspoint.com/index.htm
http://www.tutorialspoint.com/ebxml
http://www.tutorialspoint.com/ajax
http://www.tutorialspoint.com/perl
http://www.tutorialspoint.com/index.htm
http://www.tutorialspoint.com/ebxml
http://www.tutorialspoint.com/ajax
http://www.tutorialspoint.com/perl

SCRIPTING LANGUAGES M.TECH. II YEAR I SEM (R18)

101

function libraries. To do so, you’ll need to define a function using PHP’s supported syntax, which

when written in pseudo code looks like this:

function function Name(parameters)

{

function-body

}

For example, consider the following function, generateFooter(), which outputs a page footer:

function generateFooter()

{

echo "Department of Computer Science and Engineering";

}

Once defined, you can call this function like so:

<?php generateFooter();

?>

This yields the following result:

Department of Computer Science and Engineering

Passing Arguments by Value

You‘ll often find it useful to pass data into a function. As an example, let’s create a function that

calculates an item’s total cost by determining its sales tax and then adding that amount to the price.

function calcSalesTax($price, $tax)

{

$total = $price + ($price * $tax); echo "Total cost: $total";

SCRIPTING LANGUAGES M.TECH. II YEAR I SEM (R18)

102

}

This function accepts two parameters, aptly named $price and $tax, which are used in the

calculation. Although these parameters are intended to be floating points, because of PHP’s weak

typing, nothing prevents you from passing in variables of any datatype, but the outcome might not

be what you expect. In addition, you’re allowed to define as few or as many parameters as you

deem necessary; there are no language-imposed constraints in this regard.Once defined, you can

then invoke the function as demonstrated

calcSalesTax() function would be called like so: calcSalesTax(15.00, .075);

Recursive Functions

Recursive functions, or functions that call themselves, offer considerable practical value to the

programmer and are used to divide an otherwise complex problem into a simple case, reiterating

that case until the problem is resolved.

Function Libraries

Great programmers are lazy, and lazy programmers think in terms of reusability. Functions offer a

great way to reuse code and are often collectively assembled into libraries and subsequently

repeatedly reused within similar applications. PHP libraries are created via the simple aggregation

of function definitions in a single file, like this:

<?php

function localTax($grossIncome, $taxRate)

{

// function body here

}

function stateTax($grossIncome, $taxRate, $age)

{

SCRIPTING LANGUAGES M.TECH. II YEAR I SEM (R18)

103

// function body here

}

function medicare($grossIncome, $medicareRate)

{

// function body here

}

?>

ARRAYS

PHP takes this definition a step further, forgoing the requirement that the items share the same data

type. For example, an array could quite possibly contain items such as state names, ZIP codes,

exam scores, or playing card suits. Each item consists of two components: the aforementioned key

and a value. The key serves as the lookup facility for retrieving its counterpart, the value. Keys can

be numerical or associative. Numerical keys bear no real relation to the value other than the value’s

position in the array.

$states = array(0 => "Alabama", 1 => "Alaska"...49 => "Wyoming");

$states = array("OH" => "Ohio", "PA" => "Pennsylvania", "NY" => "New York")

Creating an Array

Unlike other languages, PHP doesn’t require that you assign a size to an array at creation time. In

fact, because it’s a loosely typed language, PHP doesn’t even require that you declare the array

before using it.

$state[0] = "Delaware";

Interestingly, if you intend for the index value to be numerical and ascending, you can omit the

index value at creation time:

$state[] = "Pennsylvania";

SCRIPTING LANGUAGES M.TECH. II YEAR I SEM (R18)

104

$state[] = "New Jersey";

...

$state[] = "Hawaii";

Creating Arrays with array()

The array() construct takes as its input zero or more items and returns an array consisting of these

input elements. Its prototype looks like this:

array array([item1 [,item2 ... [,itemN]]])

Extracting Arrays with list()

The list() construct is similar to array(), though it’s used to make simultaneous variable assignments

from values extracted from an array in just one operation. Its prototype looks like this:

void list(mixed...)This construct can be particularly useful when you’re extracting information from

a database or file.

Adding and Removing Array Elements

PHP provides a number of functions for both growing and shrinking an array. Some of these

functions are provided as a convenience to programmers who wish to mimic various queue

implementations (FIFO, LIFO, etc.), as reflected by their names (push, pop, shift, and unshift).

Adding a Value to the Front of an Array

The array_unshift() function adds elements to the front of the array. All preexisting numerical keys

are modified to reflect their new position in the array, but associative keys aren’t affected. Its

prototype follows:

int array_unshift(array array, mixed variable [, mixed variable...]) The following example adds two

states to the front of the $states array:

$states = array("Ohio", "New York"); array_unshift($states, "California", "Texas");

SCRIPTING LANGUAGES M.TECH. II YEAR I SEM (R18)

105

// $states = array("California", "Texas", "Ohio", "New York"); Adding a Value to the End of an

Array.

elements in the array after the new value has been added. You can push multiple variables onto the

array simultaneously by passing these variables into the function as input parameters. Its prototype

follows:

int array_push(array array, mixed variable [, mixed variable...]) The following example adds two

more states onto the $states array:

$states = array("Ohio", "New York"); array_push($states, "California", "Texas");

// $states = array("Ohio", "New York", "California", "Texas");

Locating Array Elements

The ability to efficiently sift through data is absolutely crucial in today’s information-driven

society.

Searching an Array The in_array() function searches an array for a specific value, returning

TRUE if the value is found and FALSE otherwise. Its prototype follows:

boolean in_array(mixed needle, array haystack [, boolean strict])

Searching

Associative Array

Keys

The function array_key_exists() returns TRUE if a specified key is found

in an array and FALSE otherwise. Its prototype follows: boolean

array_key_exists(mixed key, array array)

Searching

Associative Array

Values

The array_search() function searches an array for a specified value,

returning its key if located and FALSE otherwise. Its prototype follows:

mixed array_search(mixed needle, array haystack [, boolean strict])

SCRIPTING LANGUAGES M.TECH. II YEAR I SEM (R18)

106

Retrieving Array

Keys

The array_keys() function returns an array consisting of all keys located

in an array. Its prototype follows:

array array_keys(array array [, mixed search_value [, boolean

preserve_keys]])

Retrieving Array

Values

The array_values() function returns all values located in an array,

automatically providing numeric indexes for the returned array. Its

prototype follows:

array array_values(array array)

Traversing Arrays

The need to travel across an array and retrieve various keys, values, or both is common, so it’s not a

surprise that PHP offers numerous functions suited to this need. Many of these functions do double

duty: retrieving the key or value residing at the current pointer location, and moving the pointer to

the next appropriate location.

Retrieving the

Current Array

Key

The key() function returns the key located at the current pointer

position of the provided array. Its prototype follows:

mixed key(array array)

Retrieving the

Current Array

Key

The key() function returns the key located at the current pointer

position of the provided array. Its prototype follows:

mixed key(array array)

SCRIPTING LANGUAGES M.TECH. II YEAR I SEM (R18)

107

Moving the Array Pointer

Moving the

Pointer to the

Next Array

Position

The next() function returns the array value residing at the position

immediately following that of the current array pointer. Its

prototype follows:

mixed next(array array)

Moving the

Pointer to the

Previous Array

Position

The prev() function returns the array value residing at the location

preceding the current pointer location, or FALSE if the pointer

resides at the first position in the array. Its prototype follows: mixed

prev(array array)

Moving the

Pointer to the

First Array

Position

The reset() function serves to set an array pointer back to the

beginning of the array. Its prototype follows:

mixed reset(array array)

Moving the

Pointer to the

Last Array

Position

The end() function moves the pointer to the last position of an array,

returning the last element. Its prototype follows:

mixed end(array array)

Strings and Regular Expressions

PHP has long supported two regular expression implementations known as Perl and POSIX.

Regular Expressions

Regular expressions provide the foundation for describing or matching data according to defined

syntax rules. A regular expression is nothing more than a pattern of characters itself, matched

against a certain parcel of text. This sequence may be a pattern with which you are already familiar,

such as the word dog, or it may be a pattern with specific meaning in the context of the world of

pattern matching, <(?)>.*<\ /.?>

SCRIPTING LANGUAGES M.TECH. II YEAR I SEM (R18)

108

Regular Expression Syntax (POSIX)

POSIX stands for Portable Operating System Interface for Unix and is representative of a set of

standards originally intended for Unix-based operating systems. POSIX regular expression syntax is

an attempt to standardize how regular expressions are implemented in many programming

languages.

Brackets:Brackets ([]) are used to represent a list, or range, of characters to be matched. For

instance, contrary to the regular expression php, which will locate strings containing the explicit

string php, the regular expression [php] will find any string containing the character p or h. Several

commonly used character ranges follow:

[a-z] matches any character from lowercase a through lowercase z.

[A-Z] matches any character from uppercase A through uppercase Z.

[A-Za-z] matches any character from uppercase A through lowercase z.

[0-9] matches any decimal digit from 0 through 9.

Quantifiers

Sometimes you might want to create regular expressions that look for characters based on their

frequency or position

p+ matches any string containing at least one p.

p* matches any string containing zero or more p’s.

p? matches any string containing zero or one p.

p{2} matches any string containing a sequence of two p’s.

p{2,3} matches any string containing a sequence of two or three p’s.

p{2,} matches any string containing a sequence of at least two p’s.

p$ matches any string with p at the end of it. Predefined Character Ranges (Character Classes)

SCRIPTING LANGUAGES M.TECH. II YEAR I SEM (R18)

109

For reasons of convenience, several predefined character ranges, also known as character classes,

are available. Character classes specify an entire range of characters—for example:

the alphabet or an integer set. Standard classes include the following:

[:alpha:]: Lowercase and uppercase alphabetical characters. This can also be specified as [A- Za-z].

[:alnum:]: Lowercase and uppercase alphabetical characters and numerical digits. This can also be

specified as [A-Za-z0-9].

[:cntrl:]: Control characters such as tab, escape, or backspace.

[:digit:]: Numerical digits 0 through 9. This can also be specified as [0-9]. [:graph:]: Printable

characters found in the range of ASCII 33 to 126.

[:lower:]: Lowercase alphabetical characters. This can also be specified as [a-z].

[:punct:]: Punctuation characters, including ~ ` ! @ # $ % ^ & * () - _ + = { } [] : ; '< > , . ? and /.

[:upper:]: Uppercase alphabetical characters. This can also be specified as [A-Z]. [:space:]:

Whitespace characters, including the space, horizontal tab, vertical tab, new line, form feed, or

carriage return.

[:xdigit:]: Hexadecimal characters. This can also be specified as [a-fA-F0-9].

PHP’s Regular Expression Functions (POSIX Extended)

PHP offers seven functions for searching strings using POSIX-style regular expressions:

ereg(),ereg_replace(), eregi(), eregi_replace(), split(), spliti(), and sql_regcase().

Performing a Case-

Sensitive Search

The ereg() function executes a case-sensitive search of a string for a

defined pattern, returning the length of the matched string if the pattern

is found and FALSE otherwise. Its prototype follows:

int ereg(string pattern, string string [, array regs])

SCRIPTING LANGUAGES M.TECH. II YEAR I SEM (R18)

110

Performing a Case-

Insensitive Search

The eregi() function searches a string for a defined pattern in a case-

insensitive fashion. Its prototype

follows:

int eregi(string pattern, string string, [array regs])

Replacing Text in a

Case-Sensitive

Fashion

The ereg_replace() function operates much like ereg(), except that its

power is extended to finding and replacing a pattern with a replacement

string instead of simply locating it. Its prototype follows: string

ereg_replace(string pattern, string replacement, string string)

SCRIPTING LANGUAGES M.TECH. II YEAR I SEM (R18)

111

UNIT – 3

Advanced PHP Programming Php and Web Forms, Files, PHP Authentication and

Methodologies Hard Coded, File Based, Database Based, IP Based, Login Administration,

Uploading Files with PHP, Sending Email using PHP, PHP Encryption Functions, the Mcrypt

package, Building Web sites for the World – Translating Websites- Updating Web sites Scripts,

Creating the Localization Repository, Translating Files, text, Generate Binary Files, Set the desired

language within your scripts, Localizing Dates, Numbers and Times.

Advanced PHP Programming Php:

How To Use PHP And Web Forms To Carry Out The Following Tasks:

 • Pass Data from A Form To A PHP Script

 • Validate Form Data

 • Work with Multivalued Form Components

 • Take Advantage of PEAR: The HTML_Quickform2 Package

 Before jumping into any examples, let’s begin with an introduction to how PHP is able to accept

and process data submitted through a web form.

 PHP and Web Forms What makes the web so interesting and useful is its ability to

disseminate information as well as collect it, the latter of which is accomplished primarily

through an HTML-based form. These forms are used to encourage site feedback, facilitate

forum conversations, collect mailing and billing addresses for online orders, and much

more. But coding the HTML form is only part of what’s required to effectively accept user

input; a server-side component must be ready to process the input. Using PHP for this

purpose is the subject of this section.

 Instead, this chapter reviews how you can use web forms in conjunction with PHP to gather

and process user data. There are two common methods for passing data from one script to

another: GET and POST. Although GET is the default, you’ll typically want to use POST

SCRIPTING LANGUAGES M.TECH. II YEAR I SEM (R18)

112

because it’s capable of handling considerably more data, an important characteristic when

you’re using forms to insert and modify large blocks of text. If you use POST, any posted

data sent to a PHP script must be referenced using the $_POST

Syntax

 For example:

 suppose the form contains a text-field value named email that looks like this:

<input type="text" id="email" name="email" size="20" maxlength="40" />

Once this form is submitted, you can reference that text-field value like so:

$_POST['email']

Of course, for sake of convenience, nothing prevents you from first assigning this value to another

variable, like so:

$email = $_POST['email'];

Web applications

In a Web application, the user interacts with a web page via HTML form

elements and/or hyperlinks. After making choices and/or clicking some element (like a button), data

is submitted to a program which then generates the next web page, and so on.

Web applications have a very different style than Java GUI applications. Both are event-

driven through GUI interfaces, but instead of being a single program, a web application acts as a

series of programs which start and terminate for each generated response. The term stateless of

often used to describe a web application in the simplest sense because it produces its output solely

on the incoming parameters. A key ingredient is introducing state into the applications through

database and or session usage.

Another feature of web applications is that the responses are normally stacked. This is what

the "Back" button in the browser is all about, the maintenance of a URL history with the ability to

go back to previous activations. This history has both good and bad points. It gives the user the

SCRIPTING LANGUAGES M.TECH. II YEAR I SEM (R18)

113

ability to retrace his/her steps, but if a web activation represents a "one-time" transaction, like

deleting a database record, then the notion of going back to that activation is error-prone at best.

Request data processing

Web data is transmitted as a list of parameters/values in a data string constructed, by default, like

this:

 name1=value1&name2=value2&...

Where name1, name2, etc., correspond to the values of name attributes of form elements and the

values are somehow generated by these form elements. In most circumstances a parameter name

appears only once (single-valued), but it is possible for it to appear more than once (multi-valued).

This construction of parameter/value encoding is referred to as application/x-www-form-

urlencoded.

A GET request sends this encoded parameter data string attached to the script's URL in the form of

a query string following a ? after the script name:

http://.../SCRIPT?name1=value1&name2=value2&...

A POST request sends the parameter string to the script which receives it through an external input

stream. There are reasons for choosing to use GET or POST queries:

GET queries are visible and repeatable. Users can easily bookmark GET queries and thereby

remember and communicate "web finds."

POST queries, by virtue of not sending data through the URL, are more secure for password entry,

etc. Additionally, POST queries permit larger amounts of data to be sent.

The GET method is the method used by standard hyperlink activations and is the default used by

an form element. Web database-driven applications generally prefer the POST method.

 PHP PARAMETER PROCESSING

In Php, parameter name/value pairs are processed and made available via these superglobal array

maps:

SCRIPTING LANGUAGES M.TECH. II YEAR I SEM (R18)

114

$_GET, $_POST, $_REQUEST

$_GET['param'] and $_POST['param'], as suggested, hold the value of parameter param obtained as

by GET or POST, respectively. $_REQUEST is effectively a merge of these two maps,

representing either a GET or POST parameter. If there is no such parameter param, the value is

undefined.A multi-valued parameter for Php processing appears in the data string with brackets,

typically like this:

name[]=value

In this case Php will regard $_REQUEST['name'] as an array (or undefined).

The Php filter input function

Although we can obtain parameter values directly from the superglobals $_REQUEST, etc., it is

recommended to obtain these using the dedicated filter_input function. In the simplest usage we

would write:

$param = filter_input(INPUT_POST, 'param');

to extract the parameter value. If there is no such parameter, the variable value is NULL,

but not undefined. The rough equivalent is the more complex construction which must first tests for

definedness:

$param = isset($_POST['param']) ? $_POST['param'] : null;

One advantage of the filter_input function is to circumvent the limitation of undefined parameters.

An optional third argument in filter_input dictates the type of filtering; an optional fourth argument

dictates other aspects of processing. For example, a multi-valued parameter, array_param, should

use this call:

$array_param = filter_input(INPUT_POST, 'array_param',

FILTER_DEFAULT, FILTER_REQUIRE_ARRAY);

which will return either an array of values or null if array_param is not one of the parameters.

http://php.net/manual/en/function.filter-input.php

SCRIPTING LANGUAGES M.TECH. II YEAR I SEM (R18)

115

The web server environment

The web server environment in Php is represented by the superglobal variable $_SERVER which

can assess other dynamic information about the script's activation: Here are some examples:

 $_SERVER['REQUEST_METHOD'] = the type of HTTP request, either GET or POST.

 $_SERVER['QUERY_STRING'] = portion of URL following the ?; input to a script

 $_SERVER['SCRIPT_FILENAME'] = the full path of the script.

 $_SERVER['REQUEST_URI'] = the URL with query string.

 $_SERVER['SCRIPT_NAME'] = the URL with script file.

 $_SERVER['PHP_SELF'] = the same as $_SERVER['SCRIPT_NAME'].

 $_SERVER[‘REMOTE_ADDR’] = the IP address of the “caller”.

 $_SERVER['HTTP_REFERER'] = the URL which "called" this script.

A simple Php program which dumps the superglobal $_SERVER array is this:

<pre>

<?php print_r($_SERVER) ?>

</pre>

Like request variables, server variables are better accessed using the filter_input function, this time

with INPUT_ENV as the first argument. For example, to retrieve the client IP accessing the site,

use:

$client_ip = filter_input(INPUT_SERVER, 'REMOTE_ADDR');

Forms and Components

An HTML form is enclosed within the tags:

<form action="PROGRAM" method="METHOD" target="TARGET">

<!-- form elements -->

</form>

SCRIPTING LANGUAGES M.TECH. II YEAR I SEM (R18)

116

PROGRAM is what is called when the form is submitted; this is some type of program which will

process the information sent through form parameters

METHOD is either GET or POST

TARGET indicates where the action SCRIPT will display. The default is to display in the frame

containing the form. A common alternative is the value _blank which puts the output in a new tab.

Form Elements

The HTML form elements provide the user interface. They consist of

BUTTON : used to submit the form.

TEXTFIELD : single line inputs

PASSWORD field : single line inputs whose content is masked

TEXTAREA : multi-line inputs

SELECTION LIST : these give a choice through a drop-down or scroll list

RADIO BUTTON GROUP : allow the user to exclusively select from one of several choices.

CHECK BOX GROUP : allow the user to inclusively select from one of several choices.

HIDDEN INPUT : parameter/value pair encoded by an input of type hidden; its goal is

to pass a parameter without any external appearance

Attributes

HTML elements use attributes specific to the element to change the appearance or behavior.

Attributes are name/value pairs within the start tag of an element:

<elt attr1="value1" attr2="value2" ... >

SCRIPTING LANGUAGES M.TECH. II YEAR I SEM (R18)

117

Certain attributes, called boolean attributes, have no value and are activated simply be being

present. Here are some examples:

selected (sets a chosen element in a selection list)

checked (sets a chosen element in a radio or checkbox group)

disabled (makes it unusable)

readonly (makes text-based elements uneditable)

multiple (permits multiple selection in a selection list)

Forms and Parameters

A form with a single textfield would look something like this

<form action="some_script.php" method="GET">

 <input type='text' name='param1' />

</form>

PHP Authentication and Methodologies

It is possible to use the header() function to send an "Authentication Required" message to the

client browser causing it to pop up a Username/Password input window. Once the user has filled in

a username and a password, the URL containing the PHP script will be called again with

the predefined variables PHP_AUTH_USER, PHP_AUTH_PW, and AUTH_TYPE set to the user

name, password and authentication type respectively. These predefined variables are found in

the $_SERVER array. Both "Basic" and "Digest" (since PHP 5.1.0) authentication methods are

supported. See the header() function for more information.

An example script fragment which would force client authentication on a page is as follows:

Example #1 Basic HTTP Authentication example

https://www.php.net/manual/en/function.header.php
https://www.php.net/manual/en/reserved.variables.php
https://www.php.net/manual/en/reserved.variables.server.php
https://www.php.net/manual/en/function.header.php

SCRIPTING LANGUAGES M.TECH. II YEAR I SEM (R18)

118

<?php

if (!isset($_SERVER['PHP_AUTH_USER'])) {

 header('WWW-Authenticate: Basic realm="My Realm"');

 header('HTTP/1.0 401 Unauthorized');

 echo 'Text to send if user hits Cancel button';

 exit;

} else {

 echo "<p>Hello {$_SERVER['PHP_AUTH_USER']}.</p>";

 echo "<p>You entered {$_SERVER['PHP_AUTH_PW']} as your password.</p>";

}

?>

PHP Authentication Methodologies:

 There are several ways you can implement authentication via a PHP script. In doing so, you

should always consider the scope and complexity of your authentication needs. This section

discusses four implementation methodologies: hard-coding a login pair directly into the script,

using file-based authentication, using database-based authentication, and using PEAR’s HTTP

authentication functionality. Take the time to examine each authentication approach and then

choose the solution that best fits your needs.

1. Hard-Coded Authentication

 The simplest way to restrict resource access is by hard-coding the username and password directly

into the script. for example of how to accomplish this. Authenticating Against a Hard-Coded Login

Pair

if (($_SERVER['PHP_AUTH_USER'] != 'client') ||

 ($_SERVER ['PHP_AUTH_PW'] != 'secret'))

{

header ('WWW-Authenticate: Basic Realm="Secret Stash"');

SCRIPTING LANGUAGES M.TECH. II YEAR I SEM (R18)

119

header ('HTTP/1.0 401 Unauthorized');

Print (‘you must provide the proper credentials!');

exit;

 }

 In this example,

if $_SERVER['PHP_AUTH_USER'] and $_SERVER['PHP_AUTH_PW'] are equal to client and

secret, respectively, the code block will not execute, and anything ensuing that block will execute.

Otherwise, the user is prompted for the username and password until either the proper information

is provided or a 401 unauthorized message is displayed due to multiple authentication failures.

Although authentication against hard-coded values is very quick and easy to configure, it has

several drawbacks. Foremost, all users requiring access to that resource must use the same

authentication pair. In most real-world situations, each user must be uniquely identified so that user-

specific preferences or resources can be provided. Second, changing the username or password can

be done only by entering the code and making the manual adjustment. The next two methodologies

remove these issues

File-Based Authentication

Often you need to provide each user with a unique login pair in order to track user-specific login

times, movements, and actions. This is easily accomplished with a text file, much like the one

commonly used to store information about Unix users (/etc/passwd). such a file. Each line contains

a username and an encrypted password pair, with the two elements separated by a colon.

The authenticationFile.txt File Containing Encrypted Passwords

jason:60d99e58d66a5e0f4f89ec3ddd1d9a80

donald:d5fc4b0e45c8f9a333c0056492c191cf

mickey:bc180dbc583491c00f8a1cd134f7517b

SCRIPTING LANGUAGES M.TECH. II YEAR I SEM (R18)

120

 A crucial security consideration regarding authenticationFile.txt is that this file should be stored

outside the server document root. If it’s not, an attacker could discover the file through brute-force

guessing, revealing half of the login combination.

In addition, although you have the option to skip password encryption, this practice is strongly

discouraged because users with access to the server might be able to view the login information if

file permissions are not correctly configured.

The PHP script required to parse this file and authenticate a user against a given login pair is only a

tad more complicated than the script used to authenticate against a hard-coded authentication pair.

The difference lies in the script’s additional duty of reading the text file into an array, and then

cycling through that array searching for a match.

This involves the use of several functions, including the following:

 file(string filename): The file() function reads a file into an array, with each element of the

array consisting of a line in the file.

 explode(string separator, string string [, int limit]): The explode() function splits a string into

a series of substrings, with each string boundary determined by a specific separator.

 md5(string str): The md5() function calculates an MD5 hash of a string, using RSA Security

Inc.’s MD5 Message-Digest algorithm (www.rsa.com). Because the passwords are stored

using the same encrypted format, you first use the md5() function to encrypt the provided

password, comparing the result with what is stored locally.

Authenticating a User Against a Flat File Login Repository

<?php

 // Preset authentication status to false

 $authorized = FALSE;

 if (isset($_SERVER['PHP_AUTH_USER']) && isset($_SERVER['PHP_AUTH_PW']))

{

SCRIPTING LANGUAGES M.TECH. II YEAR I SEM (R18)

121

 // Read the authentication file into an array

$authFile = file("/usr/local/lib/php/site/authenticate.txt");

 // Search array for authentication match

 // If using Windows, use \r\n

 if(in_array($_SERVER['PHP_AUTH_USER'].":"md5($_SERVER['PHP_AUTH_PW'])."\n",

$authFile))

$authorized = TRUE;

}

 // If not authorized, display authentication prompt

if (! $authorized)

{

 header('WWW-Authenticate: Basic Realm="Secret Stash"');

header('HTTP/1.0 401 Unauthorized');

 print('You must provide the proper credentials!');

exit;

}

// restricted material goes here... ?>

Although the file-based authentication system works well for relatively small, static authentication

lists, this strategy can quickly become inconvenient when you’re handling a large number of users;

when users are regularly being added, deleted, and modified; or when you need to incorporate an

authentication scheme into a larger information infrastructure such as a preexisting user table. Such

SCRIPTING LANGUAGES M.TECH. II YEAR I SEM (R18)

122

requirements are better satisfied by implementing a database-based solution. The following section

demonstrates just such a solution, using a database to store authentication pairs.

Database-Based Authentication

Of all the various authentication methodologies discussed in this chapter, implementing a

databasedriven solution is the most powerful because it not only enhances administrative

convenience and scalability, but also can be integrated into a larger database infrastructure. For

purposes of this example, the data store is limited to three fields: a primary key, a username, and a

password. These columns are placed into a table called logins

CREATE TABLE logins

 (id INTEGER UNSIGNED NOT NULL AUTO_INCREMENT PRIMARY KEY,

 username VARCHAR(255) NOT NULL,

 pswd CHAR(32) NOT NULL);

 A few lines of sample data follow:

 id username password 1

1 wjgilmore 098f6bcd4621d373cade4e832627b4f6 2

2 mwade 0e4ab1a5a6d8390f09e9a0f2d45aeb7f 3

3 jgennick 3c05ce06d51e9498ea472691cd811fb6

Login Administration

When you incorporate user logins into your application, providing a sound authentication

mechanism is only part of the total picture. How do you ensure that the user chooses a sound

password of sufficient difficulty that attackers cannot use it as a possible attack route?

Testing Password Guessability with the CrackLib Library

In an ill-conceived effort to prevent forgetting their passwords, users tend to choose something easy

to remember, such as the name of their dog, their mother’s maiden name, or even their own name or

SCRIPTING LANGUAGES M.TECH. II YEAR I SEM (R18)

123

age. Ironically, this practice often doesn’t help users to remember the password and, even worse,

offers attackers a rather simple route into an otherwise restricted system, either by researching the

user’s background and attempting various passwords until the correct one is found, or by using

brute force to discern the password through numerous repeated attempts.

In either case, the password typically is broken because the user has chosen a password that is

easily guessable, resulting in the possible compromise of not only the user’s personal data, but also

the system itself.

Reducing the possibility that easily guessable passwords could be introduced into your system is

quite simple; you turn the procedure of unchallenged password creation into one of automated

password approval.

CrackLib is intended to test the strength of a password by setting certain benchmarks that determine

its guessability, including:

 Length: Passwords must be longer than four characters.

 Case: Passwords cannot be all lowercase.

 Distinction: Passwords must contain adequate different characters. In addition, the

password cannot be blank.

 Familiarity: Passwords cannot be based on a word found in a dictionary. In addition,

passwords cannot be based on the reverse spelling of a word found in the dictionary.

Dictionaries are discussed further in a bit.

 Standard numbering: Because CrackLib’s author is British, he thought it a good idea to

check against patterns similar to what is known as a National Insurance (NI) number. The

NI number is used in Britain for taxation, much like the Social Security number (SSN) is

used in the United States. Coincidentally, both numbers are nine characters long, allowing

this mechanism to efficiently prevent the use of either, if a user is naive enough to use such

a sensitive identifier for this purpose.

Uploading Files with PHP

Uploading a file with PHP• To upload a file you need a form for the userto select the file. Create a

new HTML pagecalled upload.php (its actually HTML so youdont need the PHP element):

SCRIPTING LANGUAGES M.TECH. II YEAR I SEM (R18)

124

<form enctype="multipart/form-data"

 method="post" action="upload2.php">

 <p><input type="file" name="file01" /></p>

 <p><input type="submit" /></p>

</form>

The ENCTYPE sets the type of data to be sentby the form. Setting the field TYPE to file givesa

button to launch the browsers file dialog

Then create upload2.php to process the file:

echo "<pre>";

print_r($_FILES);

echo "</pre>";

$oldname=$_FILES["file01"]["name"];

$tempname=$_FILES["file01"]["tmp_name"];

move_uploaded_file($tempname, $oldname);.

$_FILES is the super global which holdsinformation about all uploaded files. It is anassociative

array which holds a number of otherarrays (each one of these holds informationabout a single file).

You need to tell PHP which ofthe files you want using the appropriate key (thename of the form file

field). In this case there isonly one file called file01 (because that was thename in the form). The

PRINT_R is there for youto see the structure of the array and is notneeded.

When the form is submitted to the server the fileis uploaded. It is placed in a temporary locationand

information about it is stored in $_FILES. Themiddle two lines set up some variables. The

firstholds the name of the file which was uploaded.The second one holds the name it has been

giventemporarily.• The built-in PHP function move_uploaded_file()moves the temporary file to its

SCRIPTING LANGUAGES M.TECH. II YEAR I SEM (R18)

125

intended locationand renames it. Normally that would be in aspecial "uploads" directory for

security.

 alot:$type=$_FILES[file01][type];

$size=$_FILES[file01][size];

$oldname=$_FILES[file01][name];

$tempname=$_FILES[file01][tmp_name];

if($size<=50000 && $type=="text/html")

{

if(move_uploaded_file($tempname,$oldname))

{echo "<p>The file was uploaded successfully</p>";

}

else

{echo "<p>Sorry, no good</p>";}

} else

{

echo "<p>Sorry that file cannot be uploaded.</p>";

}

Sending Email using PHP

PHP must be configured correctly in the php.ini file with the details of how your system sends

email.

PHP makes use of mail() function to send an email Syntax: mail(to, subject, message, headers,

parameters);

SCRIPTING LANGUAGES M.TECH. II YEAR I SEM (R18)

126

Parameter Description

to Required. Specifies the receiver / receivers of

the email

Subject Specifies the subject of the email.

Message Required. Defines the message to be sent. Each

line should be separated with a (n).

Headers Optional. Specifies additional headers, like

From, Cc, and Bcc The additional headers

should be separated with a CRLF (rn)

Parameters Optional. Specifies an additional parameter to

the sendmail program

Debugging and Error Handling General Programming Errors

1) Syntax errors

2)Runtime errors

3) Logical errors

Syntactical errors are the most common and the easiest to fix.

You'll see them if,for example, omit a semicolon. PHP will show an error, including the line PHP

thinks it's on.This type of error stops the execution of the php script. Also, SQL errors are normally

a matter of syntax.

Parse error: syntax error, unexpected T_VARIABLE in C:serverwwwfile_name.php on line 6

Runtime errors Run-time errors include those things that don't stop a PHP script from executing

but do stop the script from doing everything it was supposed to do.

This occurs when, for example,

it is called a function using the wrong number or types of parameters.

SCRIPTING LANGUAGES M.TECH. II YEAR I SEM (R18)

127

Missing argument 1 for function_name(), called in C:serverwwwfile_name.php on line 6 and

defined in C:serverwwwfile_name.php on line 5

 Logical errors Logical errors are actually the worst, because PHP won't necessarily report it to

you. These are outand-out bugs: problems that aren't obvious and don't stop the execution of a

script.

PHP Error Handling

There are four type of errors are present in PHP

1-Notices : These are trivial, non-critical errors. that does not terminate script . Condition:

Accessing a variable that not define

2-Warning : These are more serious errors Condition: attempting to include() a file which does not

exist. 3-Fatal errors (Runtime errors) These are critical errors that terminate script and stop

Condition:1- Calling a non-existent function 2-Missing semicolon

3-missing braces

4- Parse Error (Syntax errors) When we make mistake in PHP code like, missing semicolon or any

unexpected symbol in code

PHP Error Handling (con’t) Following are the different error handling methods: 1. 2. 3. Simple "die

()"

Statements Custom errors and error triggers Error reporting Basic Error Handling: Using the die ()

function simple script that opens a text file

<? Php $file=fopen ("welcome.txt","r");

 ?>

Send an Error Message by E-Mail

By using the error_log() function you can send error logs to a specified file or a remote destination

https://image.slidesharecdn.com/php4thsessionsendingemails-140103061252-phpapp01/95/sending-emails-through-php-5-638.jpg?cb=1388729611

SCRIPTING LANGUAGES M.TECH. II YEAR I SEM (R18)

128

<?php

//error handler function function customError($errno, $errstr)

{

echo "Error: [$errno] $errstr
";

echo "Webmaster has been notified";

error_log("Error: [

$errno] $errstr",1,

 "someone@example.com","From:

webmaster@example.com");}

PHP Encryption Functions

Encryption over the Web is largely useless unless the scripts running the encryption schemes are

operating on an SSL-enabled server. Why? PHP is a server-side scripting language, so information

must be sent to the server in pain-text format before it can be encrypted.There are many ways that

an unwanted third party can watch this information as it is transmitted from the user to the server if

the user is not operating via a secured connection.

 Encrypting Data with the md5() Hash Function

The md5() function uses MD5, a third-party hash algorithm often used for creating digital

signatures (among other things). Digital signatures can, in turn, be used to uniquely identify the

sending party.

MD5 is considered to be a one-way hashing algorithm, which means there is no practical way to

dehash data that has been hashed using md5(). Its prototype looks like this:

mailto:webmaster@example.com

SCRIPTING LANGUAGES M.TECH. II YEAR I SEM (R18)

129

 string md5(string str)

 The MD5 algorithm can also be used as a password verification system. Because it is (in theory)

extremely difficult to retrieve the original string that has been hashed using the MD5 algorithm, you

could hash a given password using MD5 and then compare that encrypted password against those

that a user enters to gain access to restricted information.

For example, assume that your secret password toystore has an MD5 hash of •

745e2abd7c52ee1dd7c14ae0d71b9d76

 You can store this hashed value on the server and compare it to the MD5 hash equivalent of the

password the user attempts to enter. Even if an intruder gets hold of the encrypted password, it

wouldn’t make much difference because that intruder can’t return the string to its original format

through conventional means. An example of hashing a string using md5() follows: Remember that

to store a complete hash in a database, you need to set the field length to 32 characters.

THE MCRYPT PACKAGE

 MCrypt is a popular data-encryption package available for use with PHP, providing support for

two-way encryption (i.e., encryption and decryption). Before you can use it, you need to follow

these installation instructions:

• 1.Go to http://mcrypt.sourceforge.net and download the package source.

• 2. Extract the contents of the compressed distribution and follow the installation

• instructions as specified in the INSTALL document.

• 3. Compile PHP with the --with-mcrypt option.

• MCrypt supports the following encryption algorithms:

Encrypting Data with MCrypt

The mcrypt_encrypt() function encrypts the provided data, returning the encrypted result. The

prototype follows:

SCRIPTING LANGUAGES M.TECH. II YEAR I SEM (R18)

130

string mcrypt_encrypt(string cipher, string key, string data,string mode [, string iv])

The provided cipher names the particular encryption algorithm, and the parameter key determines

the key used to encrypt the data. The mode parameter specifies one of the six available encryption

modes: electronic codebook, cipher block chaining, cipher feedback, 8-bit output feedback, N-bit

output feedback, and a special stream mode. Each is referenced by an abbreviation: ecb, cbc, cfb,

ofb, nofb, and stream, respectively. Finally, the iv parameter initializes cbc, cfb, ofb, and certain

algorithms used in stream mode. Consider an example:

decrypting Data with MCrypt

The mcrypt_decrypt() function decrypts a previously encrypted cipher, provided that the cipher,

key, and mode are the same as those used to encrypt the data. Its prototype follows:

string mcrypt_decrypt(string cipher, string key, string data,string mode [, string iv])

Go ahead and insert the following line into the previous example, directly after the last

statement:echo mcrypt_decrypt(MCRYPT_DES, $key, $enc, MCRYPT_MODE_CBC, $iv);

The methods in this section are only those that are in some way incorporated into the

PHPextension set. However, you are not limited to these encryption/hashing solutions.

Building Web sites for the World – Translating Websites

The Web makes it incredibly easy for you to communicate your message to anybody with an

Internet connection and a browser, no matter if they’re sitting in a café in Moscow’s Red Square, in

a farmhouse in Ohio, or in an Israeli classroom. Well, there is one tiny issue: only about 6 percent

of the world’s population speaks English natively.

1 The rest speak Chinese, Japanese, Spanish, German, French, or one of several dozen other

languages. Therefore, if you’re interested in truly reaching a global audience, you need to think

about creating a web site capable of not only speaking the visitor’s native language but also

conveying information using the visitor’s native standards of measure (notably, currency, dates,

numbers, and times). But creating software capable of being used by the global community is

difficult, and not only for the obvious reason that one has to have the resources available to translate

the web site text.

SCRIPTING LANGUAGES M.TECH. II YEAR I SEM (R18)

131

One also has to think about integrating the language and standards modifications into the existing

application in a manner that precludes insanity. This chapter will help you eliminate this second

challenge.

Updating Web Sites Scripts

supporting native languages and standards is a two-step process, requiring the developer to

internationalize and then localize the web site. Internationalizing the web site involves making the

changes necessary to then localize the web site,

Translating Web Sites

one of the many great projects created and maintained by the Free Software Foundation, consists of

a number of utilities useful for internationalizing and localizing software. Over the years it’s

become a de facto standard solution for maintaining translations for countless applications and web

sites. PHP interacts with gettext through a namesake extension, meaning you need to download the

gettext utility and install it on your system.

 If you’re running Windows, download it from http://gnuwin32.sourceforge.net and make

sure you update the PATH environment variable to point to the installation directory. Because

PHP’s gettext extension isn’t enabled by default, you probably need to reconfigure PHP. If you’re

on Linux, you can enable it by rebuilding PHP with the --with-gettext option. On Windows, just

uncomment the php_gettext.dll line found in the php.ini file.

 See Chapter 2 for more information about configuring PHP. The remainder of this section

guides you through the steps necessary to create a multilingual web site using PHP and text.

Update the Web Site Scripts

Text must be able to recognize which strings you’d like to translate. This is done by passing all

translatable output through the gettext() function. Each time gettext() is encountered, PHP will look

to the language-specific localization repository (more about this in Step 2) and match the string

encompassed within the function to the corresponding translation.

The script knows which translation to retrieve due to earlier calls to setlocale(), which tells PHP and

gettext which language and country you want to conform to, and then to bindtextdomain() and

SCRIPTING LANGUAGES M.TECH. II YEAR I SEM (R18)

132

textdomain(), which tell PHP where to look for the translation files. Pay special attention to the

mention of both language and country because you shouldn’t simply pass a language name (e.g.,

Italian) to setlocale(). Rather, you need to choose from a predefined combination of language and

country codes as defined by the International Standards Organization.

For example, you might want to localize to English but use the United States number and time/date

format. In this case, you would pass en_US to setlocale() as opposed to passing en_GB. Because

the differences between British and United States English are minimal, largely confined to a few

spelling variants, you’d only be required to maintain the few differing strings and allow gettext() to

default to the strings passed to the function for those it cannot find in the repository.

PHP Auto Update Script is a customizable PHP self-update system to automatically install and

update PHP scripts and databases in background. Use it to add version check features into your

applications, create online installers, upgrade and downgrade current installations, setup databases,

and more.

PHP Auto Update Script downloads and installs a desired version of specified application on user’s

machine and keeps it up to date. Installation and upgrade packages are stored separately; therefore,

user receives updates faster by downloading only new files he needs.

Each product supports an unlimited number of versions and files. Meanwhile, each version can

auto-expire after a specific date or a particular number of downloads. Thorough, real-time reports

and callbacks let developers track every single copy installed.

PHP self-update script takes minutes to setup and supports all PHP frameworks, encoders,

accelerators and templating engines.

The main PHP auto update system features include, but are not limited, to:

 Invisible, automatic background updates;

 Smooth integration into any PHP-based script;

 PHP encoders, accelerators and templates support;

 Unlimited products, versions and files;

 Separate installation and upgrade packages;

 Separate MySQL installation and upgrade queries;

SCRIPTING LANGUAGES M.TECH. II YEAR I SEM (R18)

133

 Active versions limit for each product;

 Individual version expiration dates;

 Installation and upgrade limits;

 Precise product installation lists;

 Installation and upgrade callbacks;

 Thorough, real-time reports;

 Detailed changelogs and release notes;

 Custom notifications in your language;

 Updates verification and users blocking;

 Built-in API for complete automation;

 Bundled demo script and code examples;

 Auto PHP Licenser integration ready

Table: Common Country and Language Code Combinations

Combination Locale

pt_ BR Brazil

fr_ FR France

de_ DE Germany

en_ GB Great Britain

he_ IL Israel

it_ IT Italy

es_ MX Mexico

es_ ES Spain

en_ US United States

https://codecanyon.net/item/auto-php-licenser/19720092

SCRIPTING LANGUAGES M.TECH. II YEAR I SEM (R18)

134

Listing 23-1 presents a simple example that seeks to translate the string Enter your email address: to

its Italian equivalent.

Listing 23-1. Using gettext() to Support Multiple Languages

<?php

// Specify the target language $language = 'it_IT';

// Assign the appropriate locale setlocale(LC_ALL, $language);

// Identify the location of the translation files

bindtextdomain('messages', '/usr/local/apache/htdocs/locale');

// Tell the script which domain to search within when translating text

textdomain('messages');

?>

<form action="subscribe.php" method="post">

<?php echo gettext("Enter your e-mail address:"); ?>

<input type="text" id="email" name="email" size="20" maxlength="40" value="" />

 <input type="submit" id="submit" value="Submit" />

</form>

 Create the Localization Repository

 Next, you need to create the repository where the translated files will be stored. One directory

should be created for each language/country code combination, and within that directory you need

to create another directory named LC_MESSAGES. So if you plan on localizing the web site to

support English (the default), German, Italian, and Spanish, the directory structure would look like

this:

SCRIPTING LANGUAGES M.TECH. II YEAR I SEM (R18)

135

 locale/

de_DE/

LC_MESSAGES/

it_IT/

LC_MESSAGES/

es_ES/

LC_MESSAGES/

 You can place this directory anywhere you please because the bindtextdomain() function (used in

Listing 23-1) is responsible for mapping the path to a predefined domain name.

 Translation Files

Next, you need to extract the translatable strings from the PHP scripts. You do so with the xgettext

command, which is a utility bundled with gettext. Note that xgettext offers an impressive number of

options, each of which you can learn more about by executing xgettext with the --help option.

Executing the following command will cause xgettext to examine all of the files found in the

current directory ending in .php, producing a file consisting of the desired strings to translate:

 %>xgettext -n *.php

 The -n option results in the file name and line number being included before each string entry in

the output file. By default, the output file is named messages.po, although you can change this using

the -default-domain=FILENAME option. A sample output file follows:

SOME DESCRIPTIVE TITLE.

Copyright (C) YEAR THE PACKAGE'S COPYRIGHT HOLDER

This file is distributed under the same license as the PACKAGE package.

SCRIPTING LANGUAGES M.TECH. II YEAR I SEM (R18)

136

 # FIRST AUTHOR <EMAIL@ADDRESS>, YEAR.

 # #, fuzzy

msgid ""

 msgstr ""

"Project-Id-Version: PACKAGE VERSION\n"

"Report-Msgid-Bugs-To: \n"

"POT-Creation-Date: 2010-05-16 13:13-0400\n"

Translate the Text

Open the messages.po file residing in the language directory you’d like to translate, and translate

the strings by completing the empty msgstr entries that correspond to an extracted string. Then

replace the placeholders represented in all capital letters with information pertinent to your

application. Pay particular attention to the CHARSET placeholder because the value you use has a

direct effect on gettext’s ability to translate the application. You need to replace CHARSET with

the name of the appropriate character set used to represent the translated strings.

For example, character set ISO-8859-1 is used to represent languages using the Latin alphabet,

including English, German, Italian, and Spanish. Windows-1251 is used to represent languages

using the Cyrillic alphabet, including Russian.

Generate Binary Files

The final required preparatory step involves generating binary versions of the messages.po files,

which will be used by gettext. This is done with the msgfmt command. Navigate to the appropriate

language directory and execute the following command:

%>msgfmt messages.po

SCRIPTING LANGUAGES M.TECH. II YEAR I SEM (R18)

137

Executing this command produces a file named messages.mo, which is what gettext will ultimately

use for the translations. Like xgettext, msgfmt also offers a number of features through options.

Execute msgfmt --help to learn more about what’s available.

Set the desired language within your scripts To begin taking advantage of your localized strings, all

you need to do is set the locale using setlocale() and call the bindtextdomain() and textdomain()

functions as demonstrated in Listing 23-1.

The end result is the ability to use the same code source to present your web site in multiple

languages. For instance, Figures 23-1 depict the same form, the first with the locale set to en_US

and the second with the locale set to it_IT.

Localizing Dates, Numbers, and Times

The setlocale() function introduced in the previous section can go far beyond facilitating the

localization of language; it can also affect how PHP renders dates, numbers, and times. This is

important because of the variety of ways in which this often crucial data is represented among

different countries. For example, suppose you are a United States–based organization providing an

essential subscriptionbased service to a variety of international corporations. When it is time to

renew subscriptions, a special message is displayed at the top of the browser that looks like this:

Your subscription ends on 3-4-2011. Renew soon to avoid service cancellation.

 For the United States–based users, this date means March 4, 2011. However, for European users,

this date is interpreted as April 3, 2011. The result could be that the European users won’t feel

compelled to renew the service until the end of March, and therefore will be quite surprised when

they attempt to log in on March 5.

Enter your email address

 Submit

SUBMIT

SCRIPTING LANGUAGES M.TECH. II YEAR I SEM (R18)

138

This is just one of the many issues that might arise due to confusion over data representation. You

can eliminate such inconsistencies by localizing the information so that it appears exactly as the

user expects. PHP makes this a fairly easy task, done by setting the locale using setlocale(), and

then using functions such as money_format(), number_format(), and strftime() per usual to output

the data.

 For example, suppose you want to render the renewal deadline date according to the user’s locale.

Just set the locale using setlocale(), and run the date through strftime() (also taking advantage of

strtotime() to create the appropriate timestamp) like this:

<?php setlocale(LC_ALL, 'it_IT');

 printf("Your subscription ends on %s", strftime('%x', strtotime('2011-03-04'))); ?>

This produces the following:

 Your subscription ends on 04/03/2011

The same process applies to formatting number and monetary values. For instance, the United

States uses a comma as the thousands separator; Europe uses a period, a space, or nothing at all for

the same purpose.

Making matters more confusing, the United States uses a period for the decimal separator and

Europe uses a comma for this purpose. As a result, the following numbers are ultimately considered

identical

• 523,332.98

• 523 332.98

• 523332.98

• 523.332,98

Of course, it makes sense to render such information in a manner most familiar to the user in order

to reduce any possibility of confusion. To do so, you can use setlocale() in conjunction with

number_format() and another function named localeconv(), which returns numerical formatting

SCRIPTING LANGUAGES M.TECH. II YEAR I SEM (R18)

139

information about a defined locale. Used together, these functions can produce properly formatted

numbers, like so:

<?php setlocale(LC_ALL, 'it_IT');

$locale = localeconv();

printf("(it_IT) Total hours spent commuting %s
",

 number_format(4532.23, 2, $locale['decimal_point'], $locale['thousands_sep']));

setlocale(LC_ALL, 'en_US'); $locale = localeconv();

printf("(en_US) Total hours spent commuting %s" number_format(4532.23, 2,

$locale['decimal_point'], $locale['thousands_sep'])); ?>

This produces the following result:

(it_IT) Total hours spent commuting 4532,23

(en_US) Total hours spent commuting 4,532.23

SCRIPTING LANGUAGES M.TECH. II YEAR I SEM (R18)

140

Unit-4

TCL Structure, syntax, Variables and Data in TCL, Control Flow, Data Structures, input/output, procedures,

strings, patterns, files, Advance TCL- eval, source, exec and up level commands, Name spaces, trapping

errors, event driven programs, making applications internet aware, Nuts and Bolts Internet Programming,

Security Issues, C Interface. Tk- Visual Tool Kits, Fundamental Concepts of Tk, Tk by example, Events and

Binding , Perl-Tk.

Introduction To Tcl:

TCL stands for “Tool Command Language” and is pronounced “tickle”; is a simple scripting

language for controlling and extending applications. TCL is a radically simple open-source

interpreted programming language that provides common facilities such as variables, procedures,

and control structures as well as many useful features that are not found in any other major

language. TCL runs on almost all modern operating systems such as Unix, Macintosh, and

Windows (including Windows Mobile).

While TCL is flexible enough to be used in almost any application imaginable, it does excel in a

few key areas, including: automated interaction with external programs, embedding as a library

into application programs, language design, and general scripting. TCL was created in 1988 by

John Ousterhout and is distributed under a BSD style license (which allows you everything GPL

does, plus closing your source code).

The current stable version, in February 2008, is 8.5.1 (8.4.18 in the older 8.4 branch). The first

major GUI extension that works with TCL is TK, a toolkit that aims to rapid GUI development.

That is why TCL is now more commonly called TCL/TK. The language features far-reaching

introspection, and the syntax, while simple2, is very different from the Fortran/Algol/C++/Java

world. Although TCL is a string based language there are quite a few object-oriented extensions

for it like Snit3, incr Tcl4, and XOTcl5 to name a few.

TCL is embeddable: its interpreter is implemented as a library of C procedures that can easily be

incorporated into applications, and each application can extend the core TCL features with

additional commands specific to that application.

TCL was originally developed as a reusable command language for experimental computer aided

design (CAD) tools. The interpreter is implemented as a C library that could be linked into any

SCRIPTING LANGUAGES M.TECH. II YEAR I SEM (R18)

141

application. It is very easy to add new functions to the TCL interpreter, so it is an ideal reusable

"macro language" that can be integrated into many applications. However, TCL is a programming

language in its own right, which can be roughly described as a cross-breed between

 LISP/Scheme (mainly for its tail-recursion capabilities)

 C (control structure keywords, expr syntax) and

 Unix shells (but with more powerful structuring).

TCL Structure

 The TCL language has a tiny syntax - there is only a single command structure, and a set

of rules to determine how to interpret the commands. Other languages have special syntaxes for

control structures (if, while, repeat...) - not so in TCL. All such structures are implemented as

commands. There is a runtime library of compiled ’C’ routines, and the ’level’ of the GUI

interface is quite high.

Comments: If the first character of a command is #, it is a comment.

TCL commands: TCL commands are just words separated by spaces. Commands return strings,

and arguments are just further words.

 command argument command argument

Spaces are important

 expr 5*3

 has a single argument expr 5 * 3 has three arguments

TCL commands are separated by a new line, or a semicolon, and arrays are indexed by text

 set a(a\ text\ index) 4

Syntax

 Syntax is just the rules how a language is structured. A simple syntax of English could

say(Ignoring punctuation for the moment) A text consists of one or more sentences A sentence

consists of one or more words' Simple as this is, it also describes Tcl's syntax very well - if you say

"script" for "text", and "command" for "sentence". There's also the difference that a Tcl word can

again contain a script or a command. So if {$x < 0} {set x 0} is a command consisting of three

words: if, a condition in braces, a command (also consisting of three words) in braces. Take this

for example is a well-formed Tcl command: it calls Take (which must have been defined before)

with the three arguments "this", "for", and "example". It is up to the command how it interprets its

SCRIPTING LANGUAGES M.TECH. II YEAR I SEM (R18)

142

arguments, e.g. puts acos(-1) will write the string "acos(-1)" to the stdout channel, and return the

empty string "", while expr acos(-1) will compute the arc cosine of -1 and return 3.14159265359

(an approximation of Pi), or string length acos(-1) will invoke the string command, which again

dispatches to its length sub-command, which determines the length of the second argument and

returns 8.A Tcl script is a string that is a sequence of commands, separated by newlines or

semicolons. A command is a string that is a list of words, separated by blanks. The first word is the

name of the command; the other words are passed to it as its arguments. In Tcl, "everything is a

command" - even what in other languages would be called declaration, definition, or control

structure. A command can interpret its arguments in any way it wants - in particular, it can

implement a different language, like expression. A word is a string that is a simple word, or one

that begins with { and ends with the matching } (braces), or one that begins with " and ends with

the matching ". Braced words are not evaluated by the parser. In quoted words, substitutions can

occur before the command is called: $[A-Za-z0-9_]+ substitutes the value of the given variable.

Or, if the variable name contains characters outside that regular expression, another layer of

bracing helps the parser to get it right

puts "Guten Morgen, ${Schuler}!"

If the code would say $Schuler, this would be parsed as the value of variable $Sch, immediately

followed by the constant string üler.(Part of) a word can be an embedded script: a string in []

brackets whose contents are evaluated as a script (see above) before the current command is

called.In short: Scripts and commands contain words. Words can again contain scripts and

commands. (This can lead to words more than a page long...)

Arithmetic and logic expressions are not part of the Tcl language itself, but the language of the expr

command (also used in some arguments of the if, for, while commands) is basically equivalent to

C's expressions, with infix operators and functions.

Rules of TCL

1. The following rules define the syntax and semantics of the Tcl language:

2. Commands A Tcl script is a string containing one or more commands. Semi-colons and

newlines are command separators unless quoted as described below. Close brackets are

command terminators during command substitution (see below) unless quoted.

3. Evaluation A command is evaluated in two steps. First, the Tcl interpreter breaks the

command into words and performs substitutions as described below. These substitutions are

SCRIPTING LANGUAGES M.TECH. II YEAR I SEM (R18)

143

performed in the same way for all commands. The first word is used to locate a command

procedure to carry out the command, then all of the words of the command are passed to the

command procedure. The command procedure is free to interpret each of its words in any

way it likes, such as an integer, variable name, list, or Tcl script. Different commands

interpret their words differently.

4. Words of a command are separated by white space (except for newlines, which are command

separators).

5. Double quotes If the first character of a word is double-quote (") then the word is terminated

by the next double-quote character. If semi-colons, close brackets, or white space characters

(including newlines) appear between the quotes then they are treated as ordinary characters

and included in the word. Command substitution, variable substitution, and backslash

substitution are performed on the characters between the quotes as described below. The

double-quotes are not retained as part of the word.

6. Braces If the first character of a word is an open brace ({) then the word is terminated by

the matching close brace (}). Braces nest within the word: for each additional open brace

there must be an additional close brace (however, if an open brace or close brace within the

word is quoted with a backslash then it is not counted in locating the matching close brace).

No substitutions are performed on the characters between the braces except for backslash-

newline substitutions described below, nor do semi-colons, newlines, close brackets, or

white space receive any special interpretation. The word will consist of exactly the

characters between the outer braces, not including the braces themselves.

7. Command substitution If a word contains an open bracket ([) then Tcl performs command

substitution. To do this it invokes the Tcl interpreter recursively to process the characters

following the open bracket as a Tcl script. The script may contain any number of

commands and must be terminated by a close bracket (``]). The result of the script (i.e. the

result of its last command) is substituted into the word in place of the brackets and all of

the characters between them. There may be any number of command substitutions in a

single word. Command substitution is not performed on words enclosed in braces.

8. Variable substitution If a word contains a dollar-sign ($) then Tcl performs variable

substitution: the dollar-sign and the following characters are replaced in the word by the value

of a variable. Variable substitution may take any of the following forms:

SCRIPTING LANGUAGES M.TECH. II YEAR I SEM (R18)

144

 $name Tcl: the Tool Command language

Name is the name of a scalar variable; the name is a sequence of one or more characters that are a

letter, digit, underscore, or namespace separators (two or more colons).

 $name(index)

Name gives the name of an array variable and index gives the name of an element within that array.

Name must contain only letters, digits, underscores, and namespace separators, and may be an

empty string.

Command substitutions, variable substitutions, and backslash substitutions are performed on the

characters of index.

 ${name}

Name is the name of a scalar variable. It may contain any characters whatsoever except for close

braces. There may be any number of variable substitutions in a single word. Variable substitution is

not performed on words enclosed in braces.

(1) Backslash substitution If a backslash (\) appears within a word then backslash substitution

occurs. In all cases but those described below the backslash is dropped and the following character

is treated as an ordinary character and included in the word. This allows characters such as double

quotes, close brackets, and dollar signs to be included in words without triggering special

processing. The following table lists the backslash sequences that are handled specially, along with

the value that replaces each sequence.

\a Audible alert (bell) (0x7).

\b Backspace (0x8).

\f Form feed (0xc).

\n Newline (0xa).

\r Carriage-return (0xd).

\t Tab (0x9).

\v Vertical tab (0xb).

\<newline>whitespace

A single space character replaces the backslash, newline, and all spaces and tabs after the newline.

This backslash sequence is unique in that it is replaced in a separate pre-pass before the command

is actually parsed. This means that it will be replaced even when it occurs between braces, and the

resulting space will be treated as a word separator if it isn't in braces or quotes.

SCRIPTING LANGUAGES M.TECH. II YEAR I SEM (R18)

145

Contents

Literal backslash (\), no special effect.

\ooo

The digits ooo (one, two, or three of them) give an eight-bit octal value for the Unicode character

that will be inserted. The upper bits of the Unicode character will be 0.

\xhh

The hexadecimal digits hh give an eight-bit hexadecimal value for the Unicode character that will

be inserted. Any number of hexadecimal digits may be present; however, all but the last two are

ignored (the result is always a one-byte quantity). The upper bits of the Unicode character will be 0.

\uhhhh

The hexadecimal digits hhhh (one, two, three, or four of them) give a sixteen-bit hexadecimal

value for the Unicode character that will be inserted. Backslash substitution is not performed on

words enclosed in braces, except for backslash newline as described above.

(2) Comments If a hash character (#) appears at a point where Tcl is expecting the first character of

the first word of a command, then the hash character and the characters that follow it, up through

the next newline, are treated as a comment and ignored. The comment character only has

significance when it appears at the beginning of a command.

(3) Order of substitution Each character is processed exactly once by the Tcl interpreter as part

of creating the words of a command.

For example, if variable substitution occurs then no further substitutions are performed on the

value of the variable; the value is inserted into the word verbatim. If command substitution occurs

then the nested command is processed entirely by the recursive call to the Tcl interpreter; no

substitutions are performed before making the recursive call and no additional substitutions are

performed on the result of the nested script. Substitutions take place from left to right, and each

substitution is evaluated completely before attempting to evaluate the next. Thus, a sequence like

set y [set x 0][incr x][incr x] will always set the variable y to the value, 012.

Substitution and word boundaries Substitutions do not affect the word boundaries of a command.

For example, during variable substitution the entire value of the variable becomes part of a single

word, even if the variable's value contains spaces.

SCRIPTING LANGUAGES M.TECH. II YEAR I SEM (R18)

146

Variables and Data in TCL

As noted above, by default, variables defined inside a procedure are "local" to that

procedure. And, the argument variables of the procedure contain local "copies" of the argument

data used to invoke the procedure.

 These local variables cannot be seen elsewhere in the script, and they only exist while the

procedure is being executed. In the "getAvg" procedure above, the local variables created in the

procedure are "n" "r" and "avg". TCL provides two commands to change the scope of a variable

inside a procedure, the "global" command and the "upvar" command.

The "global" command is used to declare that one or more variables are not local to any

procedure. The value of a global variable will persist until it is explicitly changed. So, a variable

which is declared with the "global" command can be seen and changed from inside any procedure

which also declares that variable with the "global" command. Variables which are defined outside

of any procedure are automatically global by default. The TCL "global" command declares that

references to a given variable should be global rather than local. However, the "global" command

does not create or set the variable … this must be done by other means, most commonly by the TCL

"set" command.

For example, here is an adjusted version of our averaging procedure which saves the input list

length in the global variable "currentLength" so that other parts of the script can access this

information after "getAvgN" is called:

proc getAvgN { rList } \
{

global currentLength

set currentLength [llength $rList] if {!$currentLength} {return 0.0} set avg 0.0

foreach r $rList \

{

set avg [expr $avg + $r]

}

set avg [expr $avg/double($currentLength)]

return $avg

}

SCRIPTING LANGUAGES M.TECH. II YEAR I SEM (R18)

147

Then, this adjusted version "getAvgN" could be used elsewhere as follows global currentLength

set thisList "1.0 2.0 3.0" set a [getAvgN $thisList]

puts "List: $thisList Length: $currentLength Avg: $a"

We can also use global variables as an alternative to procedure arguments. For example, we can

make a version of our averaging application which assumes that the input list is stored in a global

variable called "currentList"

proc getCurrentAvg { } \
{

global currentList currentLength set currentLength [llength $rList]

 if {!$currentLength} {return 0.0} set avg 0.0

foreach r $currentList \

{

set avg [expr $avg + $r]

}

set avg [expr $avg/double($currentLength)]

return $avg

}

Then, this adjusted version "getCurrentAvg" could be used elsewhere as follows global

currentList currentLength

set currentList "1.0 2.0 3.0" set a [getCurrentAvg]

puts "List: $currentList Len: $currentLength Avg: $a"

A procedure can use global variables for persistent storage of information, including the

possibility to test whether the procedure has been called previously; this is useful for procedures

that might need to perform a one-time initialization. In these cases, a procedure will use a global

variable which is not set anywhere else. This means, the first time the procedure is called, the

global variable will not yet exist (recall that the "global" statement declares that a variable will be

accessed as a global variable, but it does not define or create the variable itself).

 The TCL command "info exists" will evaluate to true if the given variable exists. For

example, suppose we wanted to make a version of our procedure "getAvg" which keeps an internal

count of how many times it has been called. In this version, we use a global variable named

"callCount_getAvg" to keep track of the number of times "getAvg" is called. Because this global

SCRIPTING LANGUAGES M.TECH. II YEAR I SEM (R18)

148

variable will actually be used to store information for the specific use of the "getAvg" procedure,

we need to choose a global variable name which will not be used for a similar purpose in some

other procedure. The first time "getAvg" is called, the global variable does not yet exist, and must

be set to zero.

 proc getAvg { rList } \

{

global callCount_getAvg

 if {![info exists callCount_getAvg]} \

{

set callCount_getAvg 0

}

incr callCount_getAvg

puts "getAvg has been called

$callCount_getAvg times" set n

[llength $rList]

 if {!$n}

{return 0.0}

set avg 0.0 foreach r $rList \

{

set avg [expr $avg + $r]

}

set avg

[expr

$avg/doubl

e($n)]

return

$avg

}

 A more flexible way to manipulate persistent data is to use global arrays rather

than scalar variables. For example, instead of the procedure-specific scalar variable

"callCount_getAvg" used above, we can use a general-purpose array "callCount()" which could

SCRIPTING LANGUAGES M.TECH. II YEAR I SEM (R18)

149

be used to record the call counts of any number of procedures, by using the procedure name as

the array index. Many nmrWish TCL scripts use global arrays in this fashion, to simplify the

sharing of many data values between procedures. Here is a version of the "getAvg" procedure

with the call count tallied in a global array location … note that an array is declared global simply

by listing its name in a "global" command, exactly as for a scalar variable; no () parenthesis or

index values are used.

 proc getAvg { rList } \

{

global callCount

if {![info exists callCount(getAvg)]} \

{

set callCount(getAvg) 0

}

incr callCount(getAvg)

 puts "getAvg has been used $callCount(getAvg) times" set n [llength $rList]

if {!$n} {return 0.0} set avg 0.0

foreach r $rList \

{

set avg [expr $avg + $r]

}

set avg [expr $avg/double($n)]

return $avg

}

TCL Variable Scope and the upvar Command

We have already seen that TCL procedures can generate a return value as a way to pass information

back to their caller. And, we have also seen that global variables can be used to share information

between parts of a TCL script, and so these also serve as a mechanism for returning information to

a caller. TCL includes the "upvar" command as a method for a given procedure to change the

values of variables in the scope of its caller. This provides a way for a procedure to provide

additional information to the caller, besides by using the procedure's return value.

SCRIPTING LANGUAGES M.TECH. II YEAR I SEM (R18)

150

In the "upvar" scheme, a procedure's caller provides the names of one or more of its own

variables as arguments to the procedure. The procedure then uses the "upvar" command to map

these variables from the caller onto variables in the procedure. For example, here the caller

passes its variable name "count" as the first argument to procedure "getNAvg":

set count 0

set a [getNAvg count "1.0 2.0 3.0 4.0"]

Then, in this version of procedure "getNArg" the "upvar" command is used to map the first

argument value "$nPtr" onto the procedure's variable called "n" … this means that whenever the

procedure gets or changes the value of variable "n" it will actually be using the caller's variable

"count".

proc getNAvg { nPtr rList } \
{

upvar $nPtr n

set n [llength $rList] if {!$n} {return 0.0} set avg 0.0

foreach r $rList \

{

set avg [expr $avg + $r]

}

set avg [expr $avg/double($n)]

return $avg

}

Control Flow:In Tcl language there are several commands that are used to alter the flow of a

program. When a program is run, its commands are executed from the top of the source file to

the bottom. One by one. This flow can be altered by specific commands. Commands can be

executed multiple times. Some commands are conditional. They are executed only if a specific

condition is met.

The if command : The if command has the following general form:

if expr1 ?then? body1 elseif expr2 ?then? body2 elseif ... ?else? ?bodyN?

The if command is used to check if an expression is true. If it is true, a body of command(s) is

then executed. The body is enclosed by curly brackets.

The if command evaluates an expression. The expression must return a boolean value. In Tcl, 1,

SCRIPTING LANGUAGES M.TECH. II YEAR I SEM (R18)

151

yes, true mean true and 0, no, false mean false.

!/usr/bin/tclsh if yes {

puts "This message is always shown"

}

In the above example, the body enclosed by { } characters is always executed.

#!/usr/bin/tclsh if true then {

puts "This message is always shown"

}

The then command is optional. We can use it if we think, it will make the code more clear. We can

use the else command to create a simple branch. If the expression inside the square brackets

following the if command evaluates to false, the command following the else command

is automatically executed.

#!/usr/bin/tclsh set sex female

if {$sex == "male"}

{

puts "It is a boy"

} else

{

puts "It is a girl"

}

We have a sex variable. It has "female" string. The Boolean expression evaluates to false and we

get "It is a girl" in the console.

 $./girlboy.tcl

It is a girl

We can create multiple branches using the elseif command. The elseif command tests for another

condition, if and only if the previous condition was not met. Note that we can use multiple elseif

commands in our tests.

#!/usr/bin/tclsh # nums.tcl

puts -nonewline "Enter a number: " flush stdout

set a [gets stdin] if {$a < 0}

SCRIPTING LANGUAGES M.TECH. II YEAR I SEM (R18)

152

{

puts "the number is negative"

} elseif { $a == 0 }

{

puts "the numer is zero"

} else

{

puts "the number is positive"

}

In the above script we have a prompt to enter a value. We test the value if it is a negative number or

positive or if it equals to zero. If the first expression evaluates to false, the second expression is

evaluated. If the previous conditions were not met, then the body following the else commands

would be executed.

 $./nums.tcl

 Enter a number: 2

the number is positive

$./nums.tcl

Enter a number: 0

the numer is zero

$./nums.tcl

 Enter a number: -3

the number is negative

Running the example multiple times.

Switch command

 The switch command matches its string argument against each of the pattern arguments in

order. As soon as it finds a pattern that matches the string it evaluates the following body argument

by passing it recursively to the Tcl interpreter and returns the result of that evaluation. If the last

pattern argument is default then it matches anything. If no pattern argument matches string and no

default is given, then the switch command returns an empty string.

#!/usr/bin/tclsh

switch_cmd.tcl

SCRIPTING LANGUAGES M.TECH. II YEAR I SEM (R18)

153

puts -nonewline "Select a top level domain

name:" flush stdout

gets stdin

domain

switch

$domain

{

us { puts "United

States" } de { puts

Germany }

sk { puts

Slovakia } hu {

puts Hungary }

default { puts "unknown" }

}

In our script, we prompt for a domain name. There are several options. If the value equals for

example to us the "United States" string is printed to the console. If the value does not match to any

given value, the default body is executed and unknown is printed to the console.

$./switch_cmd.tcl

Select a top level domain name:sk Slovakia

We have entered sk string to the console and the program responded with Slovakia.

While command: The while command is a control flow command that allows code to be executed

repeatedly based on a given Boolean condition. The while command executes the commands

inside the block enclosed by curly brackets. The commands are executed each time the expression

is evaluated to true.

#!/usr/bin/tclsh # whileloop.tcl set i 0

set sum 0

while { $i < 10 }

{

SCRIPTING LANGUAGES M.TECH. II YEAR I SEM (R18)

154

incr i

incr sum $i

}

puts $sum

In the code example, we calculate the sum of values from a range of numbers. The while loop has

three parts: initialization, testing, and updating. Each execution of the command is called a cycle.

 set i 0

We initiate the i variable. It is used as a counter

while { $i < 10 }

{

...

}

The expression inside the curly brackets following the while command is the second phase, the

testing. The commands in the body are executed, until the expression is evaluated to false.

 incr i

The last, third phase of the while loop is the updating. The counter is incremented. Note that

improper handling of the while loops may lead to endless cycles.

FOR command:When the number of cycles is know before the loop is initiated, we can use the

for command. In this construct we declare a counter variable, which is automatically increased or

decreased in value during each repetition of the loop.

In this example, we print numbers 0..9 to the console.

#!/usr/bin/tclsh

for {set i 0} {$i < 10} {incr i}

{

puts $i

}

SCRIPTING LANGUAGES M.TECH. II YEAR I SEM (R18)

155

There are three phases. First, we initiate the counter i to zero. This phase is done only once. Next

comes the condition. If the condition is met, the command inside the for block is executed. Then

comes the third phase; the counter is increased. Now we repeat phases 2 and 3 until the condition

is not met and the for loop is left. In our case, when the counter i is equal to 10, the for loop stops

executing.

$./forloop.tcl

0

1

2

3

4

5

6

7

8

9

Here we see the output of the forloop.tcl script.

The foreach command:The foreach command simplifies traversing over collections of data. It has

no explicit counter. It goes through a list element by element and the current value is copied to a

variable defined in the construct.

#!/usr/bin/tclsh

set planets { Mercury Venus Earth Mars Jupiter Saturn Uranus Neptune }

for {set i 0} {$i < 10} {incr i}

{

puts $i

}

SCRIPTING LANGUAGES M.TECH. II YEAR I SEM (R18)

156

foreach planet $planets

{

puts $planet

}

In this example, we use the foreach command to go through a list of planets.

$./planets.tcl

 Mercury

 Venus

Earth

Mars

 Jupiter

 Saturn

Uranus

Neptune

 Running the above Tcl script gives this output.

#!/usr/bin/tclsh

set actresses { Rachel Weiss Scarlett Johansson Jessica Alba \

Marion Cotillard Jennifer Connelly}

foreach {first second} $actresses

{

puts "$first $second"

}

foreach planet $planets

{

puts $planet

}

The usage of the foreach command is straightforward. The planets is the list that we iterate

through. The planet is the temporary variable that has the current value from the list. The for each

command goes through all the planets and prints them to the console.

SCRIPTING LANGUAGES M.TECH. II YEAR I SEM (R18)

157

In this script, we iterate througn pairs of values of a list.

$./actresses.tcl

Rachel Weiss Scarlett Johansson Jessica Alba Marion Cotillard Jennifer Connelly

This is the output of actresses tcl script

 We can iterate over two lists in parallel.

$./parallel.tcl

one car

two coins

three rocks

This is the output of the parallel.tcl script.

The break and continue commands: The break command can be used to terminate a block

defined by while, for, or switch commands.

foreach {first second} $actresses

{

puts "$first $second"

}

We pick two values from the list at each iteration.

#!/usr/bin/tclsh

foreach i { one two three } item {car coins rocks}

{

puts "$i $item"

}

SCRIPTING LANGUAGES M.TECH. II YEAR I SEM (R18)

158

We define an endless while loop. We use the break command to get out of this loop. We choose a

random value from 1 to 30 and print it. If the value equals to 22, we finish the endless while

loop.

 set r [expr 1 + round(rand()*30)]

Here we calculate a random number between 1..30. The rand() is a built-in Tcl procedure. It returns

a random number from 0 to 0.99999. The rand()*30 returns a random number between 0 to

29.99999. The round() procedure rounds the final number.$./breakcommand.tcl 28 20 8 8 12 22

.We might get something like this.The continue command is used to skip a part of the loop and

continue with the next iteration of the loop. It can be used in combination with for and

while commands. In the following example, we will print a list of numbers that cannot be divided

by 2 without a remainder.

#!/usr/bin/tclsh set num 0

while { $num < 100 }

{

incr num

if {$num % 2 == 0} { continue } puts "$num "

}

puts ""

We iterate through numbers 1..99 with the while loop.

 if {$num % 2 == 0} { continue }

If the expression num % 2 returns 0, the number in question can be divided by 2. The continue

command is executed and the rest of the cycle is skipped. In our case, the last command of the

#!/usr/bin/tclsh while true

{

set r [expr 1 + round(rand()*30)] puts -nonewline "$r "

if {$r == 22} { break }

}

puts ""

SCRIPTING LANGUAGES M.TECH. II YEAR I SEM (R18)

159

loop is skipped and the number is not printed to the console. The next iteration is started.

Data Structures

The list is the basic Tcl data structure. A list is simply an ordered collection of stuff; numbers,

words, strings, or other lists. Even commands in Tcl are just lists in which the first list entry is the

name of a proc, and subsequent members of the list are the arguments to the proc. Lists can be

created in several way by setting a variable to be a list of values set lst {{item 1} {item 2} {item

3}} with the split command set lst [split "item 1.item 2.item 3" "."] with the list

command. set lst [list "item 1" "item 2" "item 3"] An individual list member can be accessed with

the index command. The brief description of these commands is

list ?arg1? ?arg2? ... ?argN? makes a list of the arguments split string ?splitChars?

Splits the string into a list of items wherever the splitChars occur in the code. SplitChars defaults

to being whitespace. Note that if there are two or more splitChars then each one will be

used individually to split the string. In other words: split "1234567" "36" would return the

following list: {12 45 7}.lindex list index

Returns the index'th item from the list.

Note: lists start from 0, not 1, so the first item is at index 0, the second item is at index 1, and so

on.llength list.Returns the number of elements in a list.The items in list can be iterated through

using the foreach command.foreach varname list body The foreach command will execute the

body code one time for each list item in list. On each pass, varname will contain the value of the

next list item.In reality, the above form of foreach is the simple form, but the command is quite

powerful. It will allow you to take more than one variable at a time from the list: foreach

{a b} $listofpairs { ... }. You can even take a variable at a time from multiple lists! For xample:

foreach a $listOfA b $listOfB { ... }

Examples

set x "a b c"

puts "Item at index 2 of the list {$x} is: [lindex $x 2]\n" set

y [split 7/4/1776 "/"]

puts "We celebrate on the [lindex $y 1]'th day of the [lindex $y 0]'th month\n" set z [list puts

"arg 2 is $y"]

SCRIPTING LANGUAGES M.TECH. II YEAR I SEM (R18)

160

puts "A command resembles: $z\n" set i

0

foreach j $x

{

puts "$j is item number $i in list x" incr i

}

Adding and deleting members of a list

The commands for adding and deleting list members are

 concat ?arg1 arg2 ... argn?

Concatenates the args into a single list. It also eliminates leading and trailing spaces in the args and

adds a single separator space between args. The argsto concat may be either individual elements,

or lists. If an arg is already a list, the contents of that list is concatenated with the other args.

lappend list Name ?arg1 arg2 ... argn?

Appends the args to the list listName treating each arg as a list element.

linsert list Name index arg1 ?arg2 ... argn?Returns a new list with the new list elements inserted just

before the index th element of listName. Each element argument will become a separate element of

the new list. If index is less than or equal to zero, then the new elements are inserted at the beginning

of the list. If index has the value end , or if it is greater than or equal to the number of elements in the

list, then the new elements are appended to the list.

lreplace list Name first last ?arg1..argn?

Returns a new list with N elements of listName replaced by the args. If first is less than or equal to 0,

lreplace starts replacing from the first element of the list.If first is greater than the end of the list, or

the word end, then lreplace behaves like lappend. If there are fewer args than the number of

positions between first and last, then the positions for which there are no args are deleted.

lset varName index newValue

The lset command can be used to set elements of a list directly, instead of using lreplace. Lists in

Tcl are the right data structure to use when you have an arbitrary number of things, and you'd like to

access them according to their order in the list. In C, you would use an array. In Tcl, arrays are

SCRIPTING LANGUAGES M.TECH. II YEAR I SEM (R18)

161

associated arrays - hash tables, as you'll see in the coming sections. If you want to have a collection

of things, and refer to the Nth thing (give me the 10th element in this group of numbers), or go

through them in order via foreach. Take a look at the example code, and pay special attention to the

way that sets of characters are grouped into single list elements.

Example

set b [list a b {c d e} {f {g h}}] puts "Treated as a list: $b\n"

set b [split "a b {c d e} {f {g h}}"] puts "Transformed by split: $b\n" set a [concat a b {c d e} {f

{g h}}] puts "Concated: $a\n"

lappend a {ij K lm};

 # Note: {ij K lm} is a single element puts "After lappending: $a\n"

More list commands - lsearch, lsort, lrange

Lists can be searched with the lsearch command, sorted with the lsort command, and a range of list

entries can be extracted with the lrange command.

 lsearch list pattern

Searches list for an entry that matches pattern, and returns the index for the first match, or a -1 if

there is no match. By default, lsearch uses "glob" patterns for matching. See the section on

globbing.

lsort list

Sorts list and returns a new list in the sorted order. By default, it sorts the list into alphabetic order.

Note that this command returns the sorted list as a result, instead of sorting the list in place. If you

have a list in a variable, the way to sort it is like so:

set lst [lsort $lst] lrange list first last

Returns a list composed of the first through last entries in the list. If first is less than or equal to 0, it

puts "After linsert at position 3:

$b\n" set b [lreplace $b 3 5 "AA"

"BB"]

puts "After lreplacing 3 positions with 2 values at position 3:

$b\n"

; set b [linsert $a 3 "1 2 3"]

"1 2 3" is a single element

https://www.tcl.tk/man/tcl8.5/tutorial/Tcl16a.html

SCRIPTING LANGUAGES M.TECH. II YEAR I SEM (R18)

162

is treated as the first list element. If last is end or a value greater than the number of elements in the

list, it is treated as the end. If first is greater than last then an empty list is returned.

Example

set list [list {Washington 1789} {Adams 1797} {Jefferson 1801} \

{Madison 1809} {Monroe 1817} {Adams 1825}]

set x [lsearch $list Washington*]

 set y [lsearch $list Madison*] incr x

 incr y -1;
 # Set range to be not-inclusive

 set subsetlist [lrange $list $x $y]

 puts "The following presidents served between Washington and Madison" foreach item

 $subsetlist {

 puts "Starting in [lindex $item 1]: President [lindex $item 0] "

 }

set x [lsearch $list Madison*] set srtlist [lsort $list]

set y [lsearch $srtlist Madison*]

puts "\n$x Presidents came before Madison chronologically" puts "$y Presidents came

before Madison alphabetically"

Input / Output

 Tcl uses objects called channels to read and write data. The channels can be created

using the open or socket command. There are three standard channels available to Tcl scripts

without explicitly creating them. They are automatically opened by the OS for each new

application. They are stdin, stdout and stderr. The standard input, stdin, is used by the scripts to read

data. The standard output, stdout, is used by scripts to write data. The standard error, stderr, is used

by scripts to write error messages.In the first example, we will work with the puts command. It has

the following synopsis:

 puts ?-nonewline? ?channelId? string

The channelId is the channel where we want to write text. The channelId is optional. If not

specified, the default stdout is assumed.

#!/usr/bin/tclsh puts

"Message 1"

SCRIPTING LANGUAGES M.TECH. II YEAR I SEM (R18)

163

puts stdout "Message 2"

puts stderr "Message 3"

The puts command writes text to the channel.

puts stderr "Message 3"

If we do not specify the channelId, we write to stdout by default. This line does the same thing as

the previous one. We only have explicitly specified the channelId. We write to the standard error

channel. The error messages go to the terminal by default.

$./printing.tcl Message 1

Message 2

 Message 3

Example output.

The read command: The read command is used to read data from a channel. The optional

argument specifies the number of characters to read. If omitted, the command reads all of the data

from the channel up to the end.

#!/usr/bin/tclsh set c

[read stdin 1] while

{$c != "q"}

{

puts -nonewline "$c" set

c [read stdin 1]

}

The script reads a character from the standard input channel and then writes it to the standard

output until it encounters the q character.

set c [read stdin 1]

We read one character from the standard input channel (stdin).

 while {$c != "q"} { We continue reading characters until the q is pressed.

puts "Message 1"

puts stdout "Message 2"

SCRIPTING LANGUAGES M.TECH. II YEAR I SEM (R18)

164

The gets command The gets command reads the next line from the channel, returns everything in

the line up to (but not including) the end-of-line character.

#!/usr/bin/tclsh

puts -nonewline "Enter your name: "

flush stdout

set name [gets stdin]

puts "Hello $name"

The script asks for input from the user and then prints a message. The puts command is used to

print messages to the terminal. The -no newline option suppresses the new line character. Tcl

buffers output internally, so characters written with puts may not appear immediately on the output

file or device. The flush command forces the output to appear immediately.

puts -no newline "Enter your name: " flush stdout

set name [gets stdin]

The gets command reads a line from a channel.

$./hello.tcl

Enter your name: Jan Hello Jan

Sample output of the script.

The pwd and cd commands

 Tcl has pwd and cd commands, similar to shell commands. The pwd command returns the

current working directory and the cd command is used to change the working directory

#!/usr/bin/tclsh set dir [pwd] puts $dir

cd ..

set dir [pwd] puts $dir

In this script, we will print the current working directory. Then we change the working directory

and print the working directory again.

set dir [pwd]

The pwd command returns the current working directory. cd ..

We change the working directory to the parent of the current directory. We use the

cd command.

$./cwd.tcl

SCRIPTING LANGUAGES M.TECH. II YEAR I SEM (R18)

165

/home/janbodnar/prog/tcl/io

/home/janbodnar/prog/tcl Sample output.

The glob command Tcl has a glob command which returns the names of the files that match a

pattern.

#!/usr/bin/tclsh

set files [glob *.tcl] foreach file $files

{

puts $file

}

The script prints all files with the .tcl extension to the console. The glob command returns a list of

files that match the *.tcl pattern.

set files [glob *.tcl] foreach file $files

{

puts $file

}

We go through the list of files and print each item of the list to the console.

$./globcmd.tcl

attributes.tcl

allfiles.tcl

printing.tcl

hello.tcl

read.tcl files.tcl

globcmd.tcl

write2file.tcl

cwd.tcl

readfile.tcl

isfile.tcl

addnumbers.tcl

SCRIPTING LANGUAGES M.TECH. II YEAR I SEM (R18)

166

This is a sample output of the globcmd.tcl script.

Procedures A procedure is a code block containing a series of commands. Procedures are

called functions in many programming languages. It is a good programming practice for procedures

to do only one specific task. Procedures bring modularity to programs. The proper use of

procedures brings the following advantages

 Reducing duplication of code

 Decomposing complex problems into simpler pieces

 Improving clarity of the code

 Reuse of code

 Information hiding

 There are two basic types of procedures: built-in procedures and user defined ones. The built-

in procedures are part of the Tcl core language. For instance, the rand(), sin() and exp() are built-in

procedures. The user defined procedures are procedures created with the proc

keyword.The proc keyword is used to create new Tcl commands. The term procedures and

commands are often used interchangeably. We start with a simple example.

#!/usr/bin/tclsh

proc tclver {}

{

set v [info tclversion]

puts "This is Tcl version $v"

}

tclver
In this script, we create a simple tclver procedure. The procedure prints the version of Tcl

language. proc tclver {}

{

The new procedure is created with the proc command. The {} characters reveal that the procedure

takes no arguments.

{

set v [info tclversion]

puts "This is Tcl version $v"

}

tclver

SCRIPTING LANGUAGES M.TECH. II YEAR I SEM (R18)

167

This is the body of the tclver procedure. It is executed when we execute the tclver command. The

body of the command lies between the curly brackets.The procedure is called by specifying its

name.

$./version.tcl

This is Tcl version 8.6 Sample output.

Procedure arguments: An argument is a value passed to the procedure. Procedures can take one

or more arguments. If procedures work with data, we must pass the data to the procedures. In the

following example, we have a procedure which takes one argument.

#!/usr/bin/tclsh

proc ftc {f}

{

return [expr $f * 9 / 5 + 32]

}

puts [ftc 100]

puts [ftc 0]

puts [ftc 30]

We create a ftc procedure which transforms Fahrenheit temperature to Celsius

temperature. The procedure takes one parameter. Its name f will be used in the

body of the procedure.

We compute the value of the Celsius temperature. The return command returns the value to the

caller. If the procedure does not execute an explicit return, then its return value is the value of the

last command executed in the procedure's body.The ftc procedure is executed. It takes 100 as a

parameter. It is the temperature in Fahrenheit. The returned value is used by the puts

command, which prints it to the console. Output of the example.

$./fahrenheit.tcl

212

proc ftc {f} {

return [expr $f * 9 / 5 + 32]

puts [ftc 100]

SCRIPTING LANGUAGES M.TECH. II YEAR I SEM (R18)

168

32

86

Next we will have a procedure which takes two arguments.

#!/usr/bin/tclsh

proc maximum {x y}

{

if {$x > $y}

{

return $x

}

else

{

return $y

}

}

set a 23

set b 32

set val [maximum $a $b]

puts "The max of $a, $b is $val"

The maximum procedure returns the maximum of two values. The method takes two arguments.

proc maximum {x y}

{

if {$x > $y}

{

return $x

}

else

{

return $y

}

Here we compute which number is greater. We define two variables which are to be compared.

SCRIPTING LANGUAGES M.TECH. II YEAR I SEM (R18)

169

set a 23

set b 32

set val [maximum $a $b]

We calculate the maximum of the two variables. This is the output of the maximum.tcl script.

$./maximum.tcl

The max of 23, 32 is 32

Variable number of arguments A procedure can take and process variable number of arguments.

For this we use the special arguments and parameter.

#!/usr/bin/tclsh

proc sum {args} { set

s 0

foreach arg $args {

incr s $arg

}

return $s

}

puts [sum 1 2 3 4]

puts [sum 1 2]

puts [sum 4]

We define a sum procedure which adds up all its arguments. The sum procedure has a special

args argument. It has a list of all values passed to the procedure.

proc sum {args}

{

foreach arg $args

{

incr s $arg

}

We go through the list and calculate the sum.

puts [sum 1 2 3 4]

SCRIPTING LANGUAGES M.TECH. II YEAR I SEM (R18)

170

puts [sum 1 2]

puts [sum 4]

We call the sum procedure three times. In the first case, it takes 4 arguments, in the second case 2,

in the last case one. Output of the variable tcl script

$./variable.tcl

10

3

4

Implicit arguments

The arguments in Tcl procedures may have implicit values. An implicit value is used if no explicit

value is provided.

#!/usr/bin/tclsh

proc power {a {b 2}}

{

if {$b == 2}

{

return [expr $a * $a]

}

set value 1

for {set i 0} {$i<$b} {incr i}

{

set value [expr $value * $a]

}

return $value

}

set v1 [power 5] set

v2 [power 5 4] puts

"5^2 is $v1" puts

"5^4 is $v2"

SCRIPTING LANGUAGES M.TECH. II YEAR I SEM (R18)

171

Here we create a power procedure. The procedure has one argument with an implicit value. We can

call the procedure with one and two arguments.

The second argument b, has an implicit value 2. If we provide only one argument, the power

procedure then returns the value of a to the power 2.We call the power procedure with one and two

arguments. The first line computes the value of 5 to the power 2. The second line value of 5 to the

power 4. Output of the example.

$./implicit.tcl

 5^2 is 25

5^4 is 625

Returning multiple values

The return command passes one value to the caller. There is often a need to return multiple values.

In such cases, we can return a list.

We have a two randoms procedure. It returns two random integers between 1 and 10. A random

integer is computed and set to the r1 variable.

proc power {a {b 2}} {

set v1 [power 5]

set v2 [power 5 4]

#!/usr/bin/tclsh

proc tworandoms {}

{

set r1 [expr round(rand()*10)]

set r2 [expr round(rand()*10)]

return [list $r1 $r2]

}

puts [two randoms]

puts [two randoms]

puts [two randoms]

puts [two randoms]

SCRIPTING LANGUAGES M.TECH. II YEAR I SEM (R18)

172

Two values are returned with the help of the list command. A sample output.

$./tworandoms.tcl

3 7

1 3

8 7

9 9

Recursion

Recursion, in mathematics and computer science, is a way of defining functions in which the

function being defined is applied within its own definition. In other words, a recursive function

calls itself to do its job. Recursion is a widely used approach to solve many programming tasks.

Recursion is the fundamental approach in functional languages like Scheme, OCalm, or Clojure.

Recursion calls have a limit in Tcl. There cannot be more than 1000 recursion calls. A typical

example of recursion is the calculation of a factorial. Factorial n! is the product of all positive

integers less than or equal to n.

#!/usr/bin/tclsh

proc factorial n

{

if {$n==0}

{

return 1

}

else

{

return [expr $n * [factorial [expr $n - 1]]]

}

}

set r1 [expr round(rand()*10)]

return [list $r1 $r2]

SCRIPTING LANGUAGES M.TECH. II YEAR I SEM (R18)

173

Stack limit between 800 and 1000 levels

puts [factorial 4]

puts [factorial 10]

puts [factorial 18]

In this code example, we calculate the factorial of three numbers.

 return [expr $n * [factorial [expr $n - 1]]]

Inside the body of the factorial procedure, we call the factorial procedure with a modified

argument. The procedure calls itself.

$./recursion.tcl

24

3628800

6402373705728000

These are the results. If we tried to compute the factorial of 100, we would receive "too many nested

evaluations" error.

SCRIPTING LANGUAGES M.TECH. II YEAR I SEM (R18)

174

Scope : A variable declared inside a procedure has a procedure scope. The scope of a name is the

region of a program text within which it is possible to refer to the entity declared by the name

without qualification of the name. A variable which is declared inside a procedure has a procedure

scope; it is also called a local scope. The variable is then valid only in this particular procedure.

In the preceding example, we have an x variable defined outside and inside of the test procedure.

Inside the test procedure, we define an x variable. The variable has local scope, valid only inside

this procedure.

set x 4

puts "x is $x" set x

1

puts "outside procedure"

puts "x is $x"

We define an x variable outside the procedure. It has a global scope. The variables do not conflict

because they have different scopes.

$./scope.tcl outside procedure x is 1

inside procedure x is 4

#!/usr/bin/tclsh

proc test {}

{

puts "inside procedure"

#puts "x is $x"

set x 4

puts "x is $x"

}

set x 1

puts "outside procedure"

puts "x is $x"

test

puts "outside procedure"

puts "x is $x"

SCRIPTING LANGUAGES M.TECH. II YEAR I SEM (R18)

175

outside procedure x is 1

It is possible to change the global variable inside a procedure.

We define a global x variable. We change the variable inside the test procedure. We refer to the

global x variable by the name y with the upvar command.

We assign a value to the local y variable and also change the value of the global x variable.

$./scope2.tcl outside procedure x is 1

inside procedure y is 1

y is 4

outside procedure x is 4

From the output we can see the test procedure has changed the x variable. With the

global command, we can refer to global variables from procedures.

#!/usr/bin/tclsh

proc test {}

{

upvar x y

puts "inside procedure"

puts "y is $y"

set y 4

puts "y is $y"

}

set x 1

puts "outside procedure"

puts "x is $x"

test

puts "outside procedure"

puts "x is $x"

upvar x y

set y 4

SCRIPTING LANGUAGES M.TECH. II YEAR I SEM (R18)

176

puts "outside x is $x"

In the above example, we have a test procedure and a nested procedure defined within the test

procedure. We refer to the global x variable from both procedures.

With the global command, we refer to the global x variable, defined outside the test procedure.

It is possible to create nested procedures. These are procedures defined inside other procedures. We

refer to the global x variable with the global command.

#!/usr/bin/tclsh

proc test {}

{

global x

puts "inside test procedure x is $x"

proc nested {}

{

global x

puts "inside nested x is $x"

}

}

set x 1

test

nested

global x

puts "inside test procedure x is $x"

proc nested {}

{

global x

puts "inside nested x is $x"

}

SCRIPTING LANGUAGES M.TECH. II YEAR I SEM (R18)

177

We call the test procedure and its nested procedure.

$./scope3.tcl

inside test procedure x is 1 inside nested x is 1 outside x is 1

Strings patterns

Files The file command manipulates file names and attributes. It has plenty of options.

#!/usr/bin/tclsh

The script prints the system's mounted values and creates a new

directory. The file volumes command returns the absolute paths to the

volumes mounted on the system.

The file mkdir creates a directory called new.

$./voldir.tcl

/

$ ls -d */

doc/ new/ tmp/

On a Linux system, there is one mounted volume—the root directory. The ls command confirms the

creation of the new directory.In the following code example, we are going to check if a file name is

a regular file or a directory.

test

nested

puts [file volumes]

[file mkdir new]

puts [file volumes]

[file mkdir new]

SCRIPTING LANGUAGES M.TECH. II YEAR I SEM (R18)

178

We go through all file names in the current working directory and print whether it is a file or a

directory.

Using the glob command we create a list of file and directory names of a current directory. We

execute the body of the if command if the file name in question is a file.

The file is directory command determines, whether a file name is a directory. Note that on Unix, a

directory is a special case of a file. The puts command can be used to write to files.

#!/usr/bin/tclsh

set files [glob *]

foreach fl $files

{

if {[file isfile $fl]}

{

puts "$fl is a file"

}

elseif

{ [file isdirectory $fl]}

{

puts "$fl is a directory"

}

}

set files [glob *]

if {[file isfile $fl]}

{

} elseif { [file isdirectory $fl]} {

#!/usr/bin/tclsh

set fp [open days w]

set days {Monday Tuesday Wednesday Thursday Friday Saturday Sunday}

puts $fp $days

close $fp

SCRIPTING LANGUAGES M.TECH. II YEAR I SEM (R18)

179

In the script, we open a file for writing. We write days of a week to a file. We open a file named

days for writing. The open command returns a channel id. This data is going to be written to the file.

We used the channel id returned by the open command to write to the file.

We close the opened channel.

$./write2file.tcl

$ cat days

Monday Tuesday Wednesday Thursday Friday Saturday Sunday

We run the script and check the contents of the days file. In the following script, we are going to

read data from a file.

$ cat languages Python

Tcl

Visual Basic Perl

Java C C#

Ruby Scheme

We have a simple file called languages in a directory.

We read data from the supplied file, read its contents and print the data to the terminal. We create a

set fp [open days w]

set days {Monday Tuesday Wednesday Thursday Friday Saturday Sunday}

puts $fp $days

close $fp

#!/usr/bin/tclsh

set fp [open languages r]

set data [read $fp]

puts -nonewline $data

close $fp

SCRIPTING LANGUAGES M.TECH. II YEAR I SEM (R18)

180

channel by opening the languages file in a read-only mode. If we do not provide a second

parameter to the read command, it reads all data from the file until the end of the file.

We print the data to the console.

$./readfile.tcl

Python

Tcl

Visual Basic

Perl

Java

C

C#

Ruby

Scheme

Sample run of the readfile.tcl script.

The eof command checks for end-of-line of a supplied channel.

set fp [open languages r]

set data [read $fp]

puts -nonewline $data

#!/usr/bin/tclsh

set fp [open languages]

while {![eof $fp]}

{

puts [gets $fp]

}

close $fp

SCRIPTING LANGUAGES M.TECH. II YEAR I SEM (R18)

181

We use the eof command to read the contents of a file.

The loop continues until the eof returns true if it encounters the end of a file. Inside

the body, we use the gets command to read a line from the file.

$./readfile2.tcl Python

Tcl

Visual Basic

 Perl

Java

 C

C#

Ruby

 Scheme

Sample run of the readfile2.tcl script.The next script performs some additional file operations.

We open a file and write some text to it. The file is copied. The original file is then deleted. The

while {![eof $fp]}

{

puts [gets $fp]

}

#!/usr/bin/tclsh

set fp [open newfile w]

puts $fp "this is new file"

flush $fp

file copy newfile newfile2

file delete newfile

close $fp

SCRIPTING LANGUAGES M.TECH. II YEAR I SEM (R18)

182

file copy command copies a file.

The original file is deleted with the file delete command. In the final example, we will work with

file attributes.

#!/usr/bin/tclsh set

files [glob *] set mx

0 foreach fl $files

{

set len [string length $fl] if {

$len > $mx}

{

set mx $len

}

}

set fstr "%-$mx\s %-s"

 puts [format $fstr Name Size]

set fstr "%-$mx\s %d bytes" foreach fl

$files

{

set size [file size $fl]

puts [format $fstr $fl $size]

}

The script creates two columns. In the first column, we have the name of the file. In the second

column, we display the size of the file.

file copy newfile newfile2

file delete newfile

SCRIPTING LANGUAGES M.TECH. II YEAR I SEM (R18)

183

In this loop, we find out the most lengthy file name. This will be used when formatting the output

columns.

Here we print the headers of the columns. To format the data, we use the format command.

set fstr "%-$mx\s %d bytes"

foreach fl $files

{

set size [file size $fl]

puts [format $fstr $fl $size]

}

We go through the list of files and print each file name and its size. The file size command

determines the size of the file.

$./attributes.tcl

Name Size

attributes.tcl 337 bytes

newfile2 17 bytes

allfiles.tcl 75 bytes

printing.tcl 83 bytes

languages 51 bytes

hello.tcl 109 bytes

foreach fl $files

{

set len [string length $fl]

if { $len > $mx}

{

set mx $len

}

}

set fstr "%-$mx\s %-s"

puts [format $fstr Name Size]

SCRIPTING LANGUAGES M.TECH. II YEAR I SEM (R18)

184

days 57 bytes

read.tcl 113 bytes

files.tcl 140 bytes

globcmd.tcl 82 bytes

write2file.tcl 134 bytes

doc 4096 bytes

cwd.tcl 76 bytes

tmp 4096 bytes

readfile.tcl 98 bytes

isfile.tcl 219 byte

Eval One difference between Tcl and most other compilers is that Tcl will allow an executing

program to create new commands and execute them while running. A tcl command is defined as a

list of strings in which the first string is a command or proc. Any string or list which meets this

criteria can be evaluated and executed. The eval command will evaluate a list of strings as though

they were commands typed at the % prompt or sourced from a file. The eval command

normally returns the final value of the commands being evaluated. If the commands being evaluated

throw an error (for example, if there is a syntax error in one of the strings), then eval will will throw

an error.Note that either concat or list may be used to create the command string, but that these two

commands will create slightly different command strings.

eval arg1 ??arg2?? ... ??argn??

Evaluates arg1 - argn as one or more Tcl commands. The args are concatenated into a string, and

passed to tcl_Eval to evaluate and execute.

Eval returns the result (or error code) of that evaluation.

Example

SCRIPTING LANGUAGES M.TECH. II YEAR I SEM (R18)

185

set cmd {puts "Evaluating a puts"}

puts "CMD IS: $cmd"

eval $cmd

if {[string match [info procs newProcA] ""] } {

puts "\nDefining newProcA for this invocation"

set num 0;

set cmd "proc newProcA "

set cmd [concat $cmd "{} {\n"]

set cmd [concat $cmd "global num;\n"]

set cmd [concat $cmd "incr num;\n"]

set cmd [concat $cmd " return \"/tmp/TMP.[pid].\$num\";\n"]

set cmd [concat $cmd "}"]

eval $cmd

}

puts "\nThe body of newProcA is: \n[info body newProcA]\n"

puts "newProcA returns: [newProcA]"

SCRIPTING LANGUAGES M.TECH. II YEAR I SEM (R18)

186

Source This command takes the contents of the specified file or resource and passes it to the Tcl

interpreter as a text script. The return value from source is the return value of the last command

executed in the script. If an error occurs in evaluating the contents of the script then the source

command will return that error. If a return command is invoked from within the script then the

remainder of the file will be skipped and the source command will return normally with the result

from the return command. The -rsrc and -rsrcid forms of this command are only available on

Macintosh computers. These versions of the command allow you to source a script from a TEXT

resource. You may specify what TEXT resource to source by either name or id. By default Tcl

searches all open resource files, which include the current application and any loaded C

extensions. Alternatively, you may specify the fileName where the TEXT resource can be found.

puts "newProcA returns: [newProcA]"

Define a proc using lists

if {[string match [info procs newProcB] ""] } {

puts "\nDefining newProcB for this invocation"

set cmd "proc newProcB "

lappend cmd {}

lappend cmd {global num; incr num; return $num;}

eval $cmd

}

puts "\nThe body of newProcB is: \n[info body newProcB]\n"

puts "newProcB returns: [newProcB]"

http://www.astro.princeton.edu/~rhl/Tcl-Tk_docs/tcl/return.n.html
http://www.astro.princeton.edu/~rhl/Tcl-Tk_docs/tcl/return.n.html

SCRIPTING LANGUAGES M.TECH. II YEAR I SEM (R18)

187

 source fileName

 source -rsrc resourceName ?fileName?

 source -rsrcid resourceId ?fileName?

Tk

 Wish - the windowing shell, is a simple scripting interface to the Tcl/Tk language. The

language Tcl (Tool Command Language) is an interpreted scripting language, with useful inter-

application communication methOds, and is pronounced ’tickle’. Tk originally was an X-window

toolkit implemented as extensions to ’tcl’. However, now it is available native on all platforms.The

program xspin is an example of a portable program in which the entire user interface is written in

wish. The program also runs on PCs using NT or Win95, and as well on Macintoshes.

 A first use of wish could be the following

 manu> wish

wish> button .quit -text "Hello World!" -command {exit}

.quit

wish> pack .quit wish>

SCRIPTING LANGUAGES M.TECH. II YEAR I SEM (R18)

188

You can encapsulate this in a script:

If you create this as a file, and make it executable, you should be able to run this simple graphical

program.

Structure of Tcl/Tk

The Tcl language has a tiny syntax - there is only a single command structure, and a set of rules to

determine how to interpret the commands. Other languages have special syntaxes for control

structures (if, while, repeat...) - not so in Tcl. All such structures are implemented as commands.

There is a runtime library of compiled ’C’ routines, and the ’level’ of the GUI interface is quite

high.

Comments: If the first character of a command is #, it is a comment

Tcl commands: Tcl commands are just words separated by spaces. Commands return strings,

and arguments are just further words.

command argument argument command argument

Spaces are important

expr 5*3 has a single argument

expr 5 * 3 has three arguments

Tcl commands are separated by a new line, or a semicolon, and arrays are indexed by text

set a(a\ text\ index) 4 Tcl/Tk quoting rules

#!/usr/local/bin/wish8.1 −f

button .quit −text "Hello World!" −command {exit}
pack .quit

CODE LISTING HelloWorld.tcl

SCRIPTING LANGUAGES M.TECH. II YEAR I SEM (R18)

189

The "quoting" rules come in to play when the " or { character are first in the word. ".." disables a

few of the special characters - for example space, tab, newline and semicolon, and {..} disables

everything except \{, \} and \nl. This facility is particularly useful for the control structures - they

end up looking very like ’C’

While

{a==10}

{ set b [tst a]

}

Tcl/Tk substitution rules

Variable substitution: The dollar sign performs the variable value substitution. Tcl variables are

strings.

set a 12b a will be "12b"

set b

12$a b will be "1212b"

Command substitution: The []’s are replaced by the value returned by executing the Tcl com-

mand ’doit’.

set a [doit param1 param2]

Backslash substitution:

set a a\ string\

with\ spaces\ \

and\ a\ new\ line

Tcl/Tk command examples:

Procedures File Access Miscellaneous

proc name {parameters} {body} open <name>

read <fileID>

close <fileID>

cd <directoryname>

source <NameOfFile>

global <varname>

catch <command>

format <formatstring> <value>

exec <process>

SCRIPTING LANGUAGES M.TECH. II YEAR I SEM (R18)

190

return <value>

List operators

split<string> ?splitcharacters?

concat <list> <list>

lindex <list> <index>

... + lots more Control structures

if {test} {thenpart} {elsepart}1while {test} {body} for {init}

 {test} {incr} {body}

 continue

% canvas <name> - optional parameter pairs ...

% button <name> - optional parameter pairs ...

% frame <name> - optional parameter pairs ...

% ... and so on

When you create a widget ".b", a new command ".b" is created, which you can use to further

communicate with it. The geometry managers in Tk assemble the widgets

% pack <name> where

Tcl/Tk example software

Here is a very small Tcl/Tk application, which displays the date in a scrollable window:

The code for this is

#!/usr/local/bin/wish8.1 −f

text .log −width 60 −height 5 −bd 2 −relief raised
pack .log

button .buttonquit −text "Quit" −command exit

pack .buttonquit

CODE LISTING SimpleProg.tcl

SCRIPTING LANGUAGES M.TECH. II YEAR I SEM (R18)

191

Here is tkpaint - a drawing/painting program written in Tcl/Tk

The mainline of the source just creates the buttons, and packs the frame: Routines for dragging,

Scaling and printing

#! /usr/local/bin/wish −f

set thistool rectangle

set thisop grow

set thiscolour black

button .exitbtn −bitmap @exit.xbm
−command exit

button .squarebtn −bitmap @square.xbm −command setsquaretool
button .circlebtn −bitmap @circle.xbm −command setcircletool

button .shrnkbtn −bitmap @shrink.xbm −command "set thisop shrnk"
button .growbtn −bitmap @grow.xbm −command "set thisop grow"
button .printbtn −bitmap @print.xbm −command printit
button .colorbtn −bitmap @newcolour.xbm −command setanewcolour

canvas .net −width 400 −height 400 −background white −relief sunken

canvas .status −width 40 −height 40 −background white −relief sunken

pack .net −side bottom
pack .status −side right

pack .squarebtn .circlebtn −side left −ipadx 1m −ipady 1m −expand 1
pack .exitbtn .printbtn −side right −ipadx 1m −ipady 1m −expand 1

pack .colorbtn .shrnkbtn .growbtn −side right −ipadx 1m −ipady 1m −expand 1

bind .net <ButtonPress−1> {makenode %x %y}

.status create rectangle 10 10 37 37 −tag statusthingy −fill $thiscolour

set nodes 0; set oldx 0; set oldy 0;

CODE LISTING tkpaint1.tcl

SCRIPTING LANGUAGES M.TECH. II YEAR I SEM (R18)

192

Node operations for tkpaint

proc beginmove {x y} {

global oldx oldy

set oldx $x; set oldy $y

}

proc domove {item x y} {

global oldx oldy

.net move $item [expr "$x − $oldx"] [expr "$y − $oldy"]

set oldx $x; set oldy $y

}

proc altersize {item x y z} {

.net scale $item $x $y $z $z

}

proc printit {} {

.net postscript −file "pic.ps"

}

CODE LISTING tkpaint4.tcl

proc makenode {x y} {

global nodes oldx oldy thistool thiscolor

set nodes [expr "$nodes+1"]

set x1 [expr "$x−20"]; set y1 [expr "$y−20"]

set x2 [expr "$x+20"]; set y2 [expr "$y+20"] if

{[string compare $thistool "oval"] == 0} {

.net create oval $x1 $y1 $x2 $y2 −tag node$nodes −fill $thiscolor

}

if {[string compare $thistool "rectangle"] == 0} {

.net create rectangle $x1 $y1 $x2 $y2 −tag node$nodes −fill $thiscolor

}

.net bind node$nodes <Enter> ".net itemconfigure node$nodes −width 5"

.net bind node$nodes <Leave> ".net itemconfigure node$nodes −width 1"

.net bind node$nodes <ButtonPress−3> "beginmove %x %y"

.net bind node$nodes <B3−Motion> "domove node$nodes %x %y"

.net bind node$nodes <ButtonPress−2> "dothisop node$nodes %x %y"

}

proc dothisop {item x y} {

global thisop

if {[string compare $thisop "shrink"] == 0} {
altersize $item $x $y 0.5

}

if {[string compare $thisop "grow"] == 0} {

CODE LISTING tkpaint2.tcl

SCRIPTING LANGUAGES M.TECH. II YEAR I SEM (R18)

193

More routines

C/Tk

In the following example, a Tcl/Tk program is integrated with a C program, giving a very small

codesize GUI application, that can be compiled on any platform - Windows, UNIX or even the

Macintosh platform without changes.

#include <stdio.h>

#include <tcl.h>

#include <tk.h>

Char tclprog[] = "\

 proc fileDialog {w}

{\

set types {\

{ \"Image files\"

proc setcircletool {} {
global thistool thiscolor
set thistool oval

.status delete statusthingy

.status create oval 10 10 37 37 −tag statusthingy −fill $thiscolor

}

proc setsquaretool {} {
global thistool thiscolor
set thistool rectangle

.status delete statusthingy

.status create rectangle 10 10 37 37 −tag statusthingy −fill $thiscolor

}

proc setanewcolor {} {

global thiscolor

if {[string compare $thiscolor "black"] == 0} {

set thiscolor green

} { if {[string compare $thiscolor "green"] == 0} {

set thiscolor blue

} { if {[string compare $thiscolor "blue"] == 0} {

set thiscolor red

} { if {[string compare $thiscolor "red"] == 0} {

set thiscolor orange

} { set thiscolor black }

}

}

}

.status itemconfigure statusthingy −fill $thiscolor

}

CODE LISTING tkpaint3.tcl

CODE LISTING CplusTclTk.c

SCRIPTING LANGUAGES M.TECH. II YEAR I SEM (R18)

194

{.gif} }\

{ \"All files\" *}\

};\

set file [tk_getOpenFile

−filetypes $types −parent

$w];\ image create photo picture −file $file;\

set glb_tx [image width picture];\ set glb_ty [image height picture];\

.c configure −width $glb_tx −height $glb_ty;\

.c create image 1 1 −anchor nw −image picture −tags \"myimage\";\

};\

frame .mbar

−relief raised −bd 2;\ frame .dummy

−width 10c

−height 0;\ pack

.mbar .dummy

−side top −fill x;\

menubutton .mbar.file −text File

−underline 0 −menu .mbar.file.menu;\ menu .mbar.file.menu −tearoff 1;\

.mbar.file.menu add command −label \"Open...\" −command

\"fileDialog .\";\

.mbar.file.menu add separator;\

.mbar.file.menu add command −label

\"Quit\" −command \"destroy .\";\ pack

SCRIPTING LANGUAGES M.TECH. II YEAR I SEM (R18)

195

.mbar.file −side left;\

canvas .c −bd 2 −relief raised;\ pack .c −side top

−expand yes −fill x;\ bind .

<Control−c>

{destroy .};\ bind .

<Control−q>

{destroy .};\ focus .mbar";

int main (argc,argv)

 int argc;

char **ar gv;

{

Tk_Window mainWindow;

Tcl_Interp

*tcl_interp;

setenv ("TCL_LIBRARY", "/cygnus/cygwin−b20/share/tcl8.0");

tcl_interp = Tcl_CreateInterp ();

if (Tcl_Init (tcl_interp) != TCL_OK || Tk_Init (tcl_interp) != TCL_OK)

{

if (*tcl_interp−>result)

(void) fprintf (stderr, "%s: %s\n", argv[0], tcl_interp−>result);

exit (1);

}

mainWindow = Tk_MainWindow (tcl_interp);

 if (mainWindow == NULL)

{

fprintf (stderr, "%s\n", tcl_interp−>result);

exit (1);

}

Tcl_Eval (tcl_interp, tclprog); Tk_MainLoop (); exit (1);

}

The first half of the listing is a C string containing a Tcl/Tk program. The second part of the listing

is C code which uses this Tcl/Tk.On a Win32 system, we compile this as:

On a UNIX system we use:

gcc -o CplusTclTk CplusTclTk.c -mwindows -ltcl80 -ltk80

gcc -o CplusTclTk CplusTclTk.c -ltk -ltcl -lX11 -lm -ldl

SCRIPTING LANGUAGES M.TECH. II YEAR I SEM (R18)

196

And the result is a simple viewer for GIF images. The total code size is 57 lines. The application

looks like this when running:

This section includes some extra material related to the use of Tcl/Tk for developing GUI appli-

cations. In particular - constructing menu items, using the Tk Canvas and structured data items.

There are pointers to some supplied reference material. Note the following points related to trying

out Tcl/Tk:If you are using cygwin-b20, the wish interpreter is called cygwish80.exe. This file is

found in the directory /cygnus/cygwin-b20/H-i586- cygwin32/cygwish80.exe. Make a copy of this

file in the same directory, and call it wish8.0.exe for compatibility with UNIX Tcl/Tk scripts.In the

first line of your tcl files, you should put #!wish8.0If you download the file

~cs3283/ftp/demos.tar and extract it into /cygnus, you will have a series of Tcl/Tk widget

examples in /cygnus/Demos. Change into the directory /cygnus/Demos, and type ./widget.

 There is a Tcl/Tk tutor, and many learn-to-program-Tcl/Tk documents available at many sites

on the Internet - if you continue to have trouble, you may wish to try them. There is no substitute for

just trying to program - set yourself a small goal, and discover how to do it in Tcl/Tk.

Tcl/Tk menus

The menu strategy is fairly simple

1. Make up a frame for the menu

SCRIPTING LANGUAGES M.TECH. II YEAR I SEM (R18)

197

2. Add in the top level menu items

3. For each top level item, add in the drop-menu items

4. For each nested item, add in any cascaded menus.

5. Remember to pack it...

As an example, the following code creates a fairly conventional application with menus, a help

dialog, and cascaded menu items.

Tk canvas

The Tk canvas widget allows you to draw items on a pane of the application. Items may be tagged

when created, and then these tagged items may be bound to events, which may be used to

manipulate the items at a later stage.This process is described in detail in Robert Biddle’s “Using

the Tk Canvas Facility”, a copy of which is found at ~cs3283/ftp/CS-TR-94- 5.pdf.Note also the

use of dynamically created variable names (node$nodes).

#!/usr/bin/wish

frame .mbar −relief raised −bd 2
pack .mbar −side top −fill x

frame .dummy −width 10c −height 100

pack .dummy

menubutton .mbar.file −text File −underline 0 −menu .mbar.file.menu

menu .mbar.file.menu −tearoff 0

.mbar.file.menu add command −label "New..." −command "newcommand"

.mbar.file.menu add command −label "Open..." −command "opencommand"

.mbar.file.menu add separator

.mbar.file.menu add command −label Quit −command exit

pack .mbar.file −side left

menubutton .mbar.edit −text Edit −underline 0 −menu .mbar.edit.menu
menu .mbar.edit.menu −tearoff 1

.mbar.edit.menu add command −label "Undo..." −command "undocommand"

.mbar.edit.menu add separator

.mbar.edit.menu add cascade −label Preferences −menu .mbar.edit.menu.prefs
menu .mbar.edit.menu.prefs −tearoff 0

.mbar.edit.menu.prefs add command −label "Load default" −command "defaultprefs"

.mbar.edit.menu.prefs add command −label "Revert" −command
"revertprefs" pack .mbar.edit −side left

menubutton .mbar.help −text Help −underline 0 −menu .mbar.help.menu

menu .mbar.help.menu −tearoff 0

.mbar.help.menu add command −label "About ThisApp..." −command "aboutcommand"

pack .mbar.help −side right

proc aboutcommand {} {

tk_dialog .win {About this program} "Hugh wrote it!" {} 0 OK

}

CODE LISTING Menus.tcl

SCRIPTING LANGUAGES M.TECH. II YEAR I SEM (R18)

198

Unit-5

Python Introduction to Python language, python-syntax, statements, functions, Built-in-functions

and Methods, Modules in python, Exception Handling, Integrated Web Applications in Python –

Building Small, Efficient Python Web Systems, Web Application Framework.

Python Introduction to Python language

Python is a powerful modern computer programming language. It bears some similarities to

Fortran, one of the earliest programming languages, but it is much more powerful than Fortran.

Python allows you to use variables without declaring them (i.e., it determines types implicitly), and

it relies on indentation as a control structure. You are not forced to define classes in Python (unlike

Java) but you are free to do so when convenient.

Python was developed by Guido van Rossum, and it is free software. Free as in “free beer,” in that

you can obtain Python without spending any money. But Python is also free in other important

ways, for example you are free to copy it as many times as you like, and free to study the source

code, and make changes to it. There is a worldwide movement behind the idea of free software,

initiated in 1983 by Richard Stallman.1This document focuses on learning Python for the purpose

of doing mathematical calculations.

We assume the reader has some knowledge of basic mathematics, but we try not to assume any

previous exposure to computer programming, although some such exposure would certainly be

helpful. Python is a good choice for mathematical calculations, since we can write code quickly,

test it easily, and its syntax is similar to the way mathematical ideas are expressed in the

mathematical literature. By learning Python you will also be learning a major tool used by many

web developers. Installation and documentation If you use Mac OS X or Linux, then Python should

already be installed on your computer by default. If not, you can download the latest version by

visiting the Python home page, at

http://www.python.org

http://www.python.org/

SCRIPTING LANGUAGES M.TECH. II YEAR I SEM (R18)

199

where you will also find loads of documentation and other useful information. Windows users can

also download Python at this website. Don’t forget this website; it is your first point of reference for

all things Python. You will find there, for example, reference [1], the excellent Python Tutorial by

Guido van Rossum. You may find it useful to read along in the Tutorial as a supplement to this

document.

 Running Python as a calculator.The easiest way to get started is to run Python as an interpreter,

which behaves similar to the way one would use a calculator. In the interpreter, you type a

command, and Python produces the answer. Then you type another command, which again

produces an answer, and so on.In OS X or Linux, to start the Python interpreter is as simple as

typing the command python on the command line in a terminal shell. In Windows, assuming that

Python has already been installed, you need to find Python in the appropriate menu. Windows users

may choose to run Python in a command shell (i.e., a DOS window) where it will behave very

similarly to Linux or OS X. For all three operating systems (Linux, OS X, Windows) there is also

an integrated development environment for Python named IDLE.

Once Python starts running in interpreter mode, using IDLE or a command shell, it

produces a prompt, which waits for your input. For example, this is what I get when I start

Python in a command shell on my Linux box:

doty@ brauer:~ python

Python 2.5.2 (r252 :60911 , Apr 21 2008 , 11 :12 :42)

[GCC 4.2.3 (Ubuntu 4.2.3 -2 ubuntu 7)] on linux2

Type " help", " copyright", " credits" or " license" for more information.

>>> where the three symbols >>> indicates the prompt awaiting my input.

So experiment, using the Python interpreter as a calculator. Be assured that you cannot harm

anything, so play with Python as much as you like. For example:

>>> 2*1024 2048

>>> 3+ 4+ 9

SCRIPTING LANGUAGES M.TECH. II YEAR I SEM (R18)

200

16

>>> 2**100 1267650600228229401496703205376 L

In the above, we first asked for the product of 2 and 1024, then we asked for the sum of 3, 4, and 9

and finally we asked for the value of 2100. Note that multiplication in Python is represented by

∗ , addition by +, and exponents by **; you will need to remember this syntax. The L appended to

the last answer is there to indicate that this is a long integer; more on this later. It is also worth

noting that Python does arbitrary precision integer arithmetic, by default

>>> 2 ** 1000 1071508607186267320948425049060001810561404811705533607443750

3883703510511249361224931983788156958581275946729175531468251

871452856923140435984577574698574803934567774824230985421074

0506237114187795418215304647498358194126739876755916554394607

7062914571196477686542167660429831652624386837205668069376L

Here is another example, where we print a table of perfect squares:

>>> for n in [1 ,2 ,3 ,4 ,5 ,6]:

... print n**2

.

.

.

1

4

9

16

SCRIPTING LANGUAGES M.TECH. II YEAR I SEM (R18)

201

25

36

Both Python and IDLE should be already preinstalled on all Loyola Windows computers. This

illustrates several points. First, the expression [1,2,3,4,5,6] is a list, and we print the values of n2 for

n varying over the list. If we prefer, we can print horizontally instead of vertically:

>>> for n in [1 ,2 ,3 ,4 ,5 ,6]:

... print n**2 ,

...

1 4 9 16 25 36

Loading commands from the library Python has a very extensive library of commands, documented

in the Python Library Reference Manual [2]. These commands are organized into modules. One of

the available modules is especially useful for us: the math module. Let’s see how it may be used.

>>> from math import sqrt , exp

>>> exp(-1)

0 .36787944117144233

>>> sqrt(2)

1 .4142135623730951

We first import the sqrt and exp functions from the math module, then use them to compute

e−1 = 1/e and √2.

Once we have loaded a function from a module, it is available for the rest of that session. When we

start a new session, we have to reload the function if we need it. Note that we could have loaded

both functions sqrt and exp by using a wildcard *:>>> from math import * which tells Python

SCRIPTING LANGUAGES M.TECH. II YEAR I SEM (R18)

202

to import all the functions in the math module. What would have happened if we forgot to import a

needed function? After starting a new session, if we type >>> sqrt(2)

Traceback (most recent call last): File "< stdin >", line 1 , in < module > N am eError:

name ’ sqrt’ is not defined we see an example of an error message, telling us that Python does not

recognize sqrt.

Defining functions

It is possible, and very useful, to define our own functions in Python. Generally speaking, if you

need to do a calculation only once, then use the interpreter. But when you or others have need to

perform a certain type of calculation many times, then define a function. For a simple example, the

compound command.

>>> def f(x):

... return x* x

...

defines the squaring function f (x) = x2, a popular example used in elementary math courses. In the

definition, the first line is the function header where the name, f, of the function is specified.

Subsequent lines give the body of the function, where the output value is calculated. Note that the

final step is to return the answer; without it we would never see any results. Continuing the

example, we can use the function to calculate the square of any given input:

>>> f(2) 4

>>>

f(2.5)

6.25

The name of a function is purely arbitrary. We could have defined the same function as above, but

with the name square instead of f; then to use it we use the new function name instead of the old:

>>> def square(x):

... return x* x

...

SCRIPTING LANGUAGES M.TECH. II YEAR I SEM (R18)

203

>>> square (3)

9

>>> square (2.5)

6.25

Actually, a function name is not completely arbitrary, since we are not allowed to use a reserved

word as a function name. Python’s reserved words are: and, def, del, for, is, raise, assert, elif, from,

lambda, return, break, else, global, not, try, class, except, if, or, while, continue, exec, import,

pass, yield.

By the way, Python also allows us to define functions using a format similar to the Lambda

Calculus in mathematical logic. For instance, the above function could alternatively be defined in

the following way

>>> square = lambda x: x* x

Here lambda x: x*x is known as a lambda expression. Lambda expressions are useful when you

need to define a function in just one line; they are also useful in situations where you need a

function but don’t want to name it.

Usually function definitions will be stored in a module (file) for later use these are

indistinguishable from Python’s Library modules from the user’s perspective.

Files

Python allows us to store our code in files (also called modules). This is very useful for more

serious programming, where we do not want to retype a long function definition from the very

beginning just to change one mistake. In doing this, we are essentially defining our own modules,

just like the modules defined already in the Python library. For example, to store our squaring

function example in a file, we can use any text editor3 to type the code into a file, such as

def square(x)

: return x* x

SCRIPTING LANGUAGES M.TECH. II YEAR I SEM (R18)

204

Notice that we omit the prompt symbols >>>, ... when typing the code into a file, but the

indentation is still important. Let’s save this file under the name “SquaringFunction.py” and then

open a terminal in order to run it:

doty@ brauer:~ python

Python 2.5.2 (r252 :60911 , Apr 21 2008 , 11 :12 :42)

[GCC 4.2.3 (Ubuntu 4.2.3 -2 ubuntu 7)] on linux2 Type " help", " copyright", " credits" or "

license" for more inform ation.

>>> from Squaring Function import square

>>> square (1.5)

2.25

Notice that I had to import the function from the file before I could use it. Importing a command

from a file works exactly the same as for library modules. (In fact, some people refer to Python files

as “modules” because of this analogy.) Also notice that the file’s extension (.py) is omitted in the

import command.

Testing code

into a Python session and try to run it. Usually there is an error, so you go back to the file, make a

correction, and test again. This process is repeated until you are satisfied that the code works. The

entire process is known as the development cycle. There are two types of errors that you will

encounter. Syntax errors occur when the form of some command is invalid. This happens when you

make typing errors such as misspellings, or call something by the wrong name, and for many other

reasons. Python will always give an error message for a syntax error.

Scripts

SCRIPTING LANGUAGES M.TECH. II YEAR I SEM (R18)

205

If you use Mac OS X or some other variant of Unix (such as Linux) then you may be interestedin

running Python commands as a script. Here’s an example. Use an editor to create a file name SayHi

containing the following lines

#! / usr/ bin/ python print " Hello World!"

print "- From your friendly Python program"

Most developers rely on emacs for editing code. Other possible choices are Notepad for Windows,

gedit for Linux/Gnome, and TextEdit for OS X. IDLE comes with its own editor, by the way.The

first line tells Python that this is a script. After saving the file, make it executable by typing chmod

755 SayHi in the terminal. To run the script, type ./SayHi in the terminal. Note that if you move the

script someplace in your search path, then you can run it simply by typing SayHi. Type echo

$PATH to see what folders are in your search path, and type which python to see where your

python program is — this should match the first line in your script. As far as I know, it is

impossible to run Python scripts in a similar way on a Windows machine

Python commands Comments

In a Python command, anything after a # symbol is a comment. For example: print " Hello world" #

this is silly Comments are not part of the command, but rather intended as documentation for

anyone reading the code. Multiline comments are also possible, and are enclosed by triple double-

quote symbols:""" This is an example of a long comment that goes on and on and on."""

Numbers and other data types.Python recognizes several different types of data. For instance, 23

and −75 are integers, while 5.0 and −23.09 are floats or floating point numbers. The type float is

(roughly) the same as a real number in mathematics. The number 12345678901 is a long integer ;

Python prints it with an “L” appended to the end. Usually the type of a piece of data is determined

implicitly.

The type function

To see the type of some data, use Python’s built-in type function:

>>> type(-75)

SCRIPTING LANGUAGES M.TECH. II YEAR I SEM (R18)

206

< type ’ int’ >

>>> type(5.0)

< type ’ float’ >

>>> type (12345678901)

< type ’ long’ >

Another useful data type is complex, used for complex numbers. For example:

>>> 2 j

2 j

>>> 2j-1 (-1+2 j)

>>> com plex(2 ,3) (2+ 3 j)

>>> type(-1+2 j)

< type ’ com plex’ >

Notice that Python uses j for the complex unit (such that j2 = −1) just as physicists do, instead of

the letter i preferred by mathematicians

Strings

Other useful data types are strings (short for “character strings”); for example "Hello World!".

Strings are sequences of characters enclosed in single or double quotes

>>> " This is a string " ’ This is a string ’

>>> ’ This is a string , too’ ’ This is a string , too’

>>> type(" This is a string ")

< type ’ str’ >

Lists and Tuples

SCRIPTING LANGUAGES M.TECH. II YEAR I SEM (R18)

207

Other important sequence types used in Python include lists and tuples. A sequence type is formed

by putting together some other types in a sequence. Here is how we form lists and tuples:

>>> [1 ,3 ,4 ,1 ,6]

[1 , 3 , 4 , 1 , 6]

>>> type([1 ,3 ,4 ,1 ,6])

< type ’ list’ >

>>> (1 ,3 ,2)

(1 , 3 , 2)

>>> type((1 ,3 ,2))

< type ’ tuple’ >

Notice that lists are enclosed in square brackets while tuples are enclosed in parentheses. Also note

that lists and tuples do not need to be homogeneous; that is, the components can be of different

types:

>>> [1 ,2 ," Hello" ,(1 ,2)]

[1 , 2 , ’ Hello ’ , (1 , 2)]

Here we created a list containing four components: two integers, a string, and a tuple. Note that

components of lists may be other lists, and so on:

Sequence types such as lists, tuples, and strings are always ordered, as opposed to a set in

mathematics, which is always unordered. Also, repetition is allowed in a sequence, but not in a set.

Range function

The range function is often used to create lists of integers. It has three forms. In the simplest form,

range(n) produces a list of all numbers 0, 1, 2, . . . , n − 1 starting with 0 and ending with n − 1. For

instance,

SCRIPTING LANGUAGES M.TECH. II YEAR I SEM (R18)

208

>>> range (17)

[0 , 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11 , 12 , 13 , 14 , 15 , 16]

You can also specify an optional starting point and an increment, which may be negative. For

instance, we have

>> range(1 ,10)

[1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9]

>>> range(-6 ,0)

[-6 , -5 , -4 , -3 , -2 , -1]

>>> range (1 ,10 ,2)

[1 , 3 , 5 , 7 , 9]

>>> range(10 ,0 ,-2)

[10 , 8 , 6 , 4 , 2]

Note the use of a negative increment in the last example. Boolean values

Finally, we should mention the Boolean type. This is a value which is either true or false.

>>> True True

>>> type(True)

< type ’ bool’ >

>>> False False

>>> type(False)

< type ’ bool’ >

Boolean types are used in making decisions.

SCRIPTING LANGUAGES M.TECH. II YEAR I SEM (R18)

209

Expressions

Python expressions are not commands, but rather form part of a command. An expression is

anything which produces a value. Examples of expressions are: 2+2, 2**100, f((x- 1)/(x+1)).

Note that in order for Python to make sense of the last one, the variable x must have a value

assigned and f should be a previously defined function. Expressions are formed from variables,

constants, function evaluations, and operators. Parentheses are used to indicate order of operations

and grouping, as usual.

Operators

The common binary operators for arithmetic are + for addition, - for subtraction, * for multi-

plication, and / for division. As already mentioned, Python uses ** for exponentiation. Integer

division is performed so that the result is always another integer (the integer quotient):

>>> 25/3 8

>>> 5/2 2

This is a wrinkle that you will always have to keep in mind when working with Python. To get a

more accurate answer, use the float type:

>>> 25.0/3 8 3333333333333339

>>> 5/2.0 2.5

If just one of the operands is of type float, then the result will be of type float. Here is another

example of this pitfall:

>>> 2 **(1 /2) 1

>>> 2**0.5 1

.4142135623730951

Another useful operator is , which is read as ”mod”. This gives the remainder of an integer

division, as in

SCRIPTING LANGUAGES M.TECH. II YEAR I SEM (R18)

210

>>> 5 2

1

>>> 25 3

1

Which shows that 5 mod 2 = 1, and 25 mod 3 = 1? This operator is useful in number theory and

cryptography. Besides the arithmetic operators we need comparison operators: <, >, <=, >=, ==,

!=, <>. In order these are read as: is less than, is greater than, is less than or equal to, is greater than

or equal to, is equal to, is not equal to, is not equal to. The result of a comparison is always a

Boolean value True or False.

>>> 2 < 3

True

>>> 3 <2

False

>>> 3 <= 2

False

Note that != and <> are synonymous; either one means not equal to. Also, the operator == means is

equal to.

>>>2 <>3

True

!=3

True

SCRIPTING LANGUAGES M.TECH. II YEAR I SEM (R18)

211

>>> 0 != 0

False

>>> 0 == 0

True

Variables and assignment

An assignment statement in Python has the form variable = expression. This has the following

effect. First the expression on the right hand side is evaluated, and then the result is assigned to the

variable. After the assignment, the variable becomes a name for the result. The variable retains the

same value until another value is assigned, in which case the previous value is lost. Executing the

assignment produces no output; its purpose it to make the association between the variable and its

value.

>>> x = 2+ 2

>>> print x 4

In the example above, the assignment statement sets x to 4, producing no output. If we want to see

The result of x.

>>> x = 380.5

>>> print x 380.5

>>> y = 2* x

>>> print y 761.0

Remember: A single = is used for assignment, the double == is used to test for equality. In

mathematics the equation x = x + 1 is nonsense; it has no solution. In computer science, the

statement x = x + 1 is useful. Its purpose is to add 1 to x, and reassign the result to x. In short, x is

incremented by 1.

>>> x = 10

SCRIPTING LANGUAGES M.TECH. II YEAR I SEM (R18)

212

>>> x = x + 1

>>>

print x 11

>>> x = x + 1

>>>

print x 12

Variable names may be any contiguous sequence of letters, numbers, and the underscore (_) char-

acter. The first character must not be a number, and you may not use a reserved word as a variable

name. Case is important; for instance Sum is a different name than sum. Other examples of legal

variable names are: a, v1, v_1, abc, Bucket, monthly total, pi , Total Assets.

Decisions

The if–else is used to make choices in Python code. This is a compound statement. The

simplest form is

if c o n d i t i

o n : a c t i

o n −1

else:

a c t i o n −2

The indentation is required. Note that the else and its action are optional. The actions action-1 and

action-2 may consist of many statements; they must all be indented the same amount. The condition

is an expression which evaluates to True or False.

Of course, if the condition evaluates to True then action-1 is executed, otherwise action-2 is

executed. In either case execution continues with the statement after the if-else. For example, the

code

x = 1

SCRIPTING LANGUAGES M.TECH. II YEAR I SEM (R18)

213

if x > 0:

print " Friday is wonderful" else:

print " Monday sucks"

print " Have a good weekend" results in the output

Friday is wonderful Have a good weekend

Note that the last print statement is not part of the if-else statement (because it isn’t indented), so if

we change the first line to say x = 0 then the output would be

Monday sucks

Have a good weekend

More complex decisions may have several alternatives depending on several conditions. For these

the elif is used. It means “else if” and one can have any number of elif clauses between the if and

the else. The usage of elif is best illustrated by an example:

if x >= 0 and x < 10: digits = 1

elif x >= 10 and x < 100: digits = 2

elif x >= 100 and x < 1000:digits = 3 elif x >= 1000 and x < 10000: digits = 4 else:

digits = 0# more than 4

In the above, the number of digits in x is computed, so long as the number is 4 or less. If x is

negative or greater than 10000, then digits will be set to zero.

Loops

Python provides two looping commands: for and while. These are compound commands. for loop

The syntax of a for loop is for i te m in l i s t :

a c t i o n

SCRIPTING LANGUAGES M.TECH. II YEAR I SEM (R18)

214

As usual, the action consists of one or more statements, all at the same indentation level. These

statements are also known as the body of the loop. The item is a variable name, and list is a list.

Execution of the for loop works by setting the variable successively to each item in the list, and

then executing the body each time. Here is a simple example (the comma at the end of the print

makes all printing occur on the same line):

for i in [2 , 4 , 6 , 0]:

print i,

This produces the output

2 4 6 0

while loop

The syntax of the while loop is

while c o n d i t i o n :

a c t i o n

Of course, the action may consist of one or more statements all at the same indentation level. The

statements in the action are known as the body of the loop. Execution of the loop works as follows.

First the condition is evaluated. If True, the body is executed and the condition evaluated again, and

this repeats until the condition evaluates to False. Here is a simple example:

n = 0 while n

< 10:

print n,

n = n + 3

This produces the following output 0 3 6 9

SCRIPTING LANGUAGES M.TECH. II YEAR I SEM (R18)

215

Note that the body of a while loop is never executed if the condition evaluates to False the first

time. Also, if the body does not change the subsequent evaluations of the condition, an infinite loop

may occur. For example

while True:

print " Hello",

will print Hellos endlessly. To interrupt the execution of an infinite loop, use CTRL-C.else in

loopsA loop may have an optional else which is executed when the loop finishes. For example, the

loop

for n in [10 ,9 ,8 ,7 ,6 ,5 ,4 ,3 ,2 ,1]:

print n, else:

print " blastoff" results in the output

10 9 8 7 6 5 4 3 2 1 blastoff and the loop

n= 10

while n

> 0: print n,

n = n - 1 else:

print " blastoff"

has the same effect (it produces identical output). Break, Continue, And Pass

The break statement, like in C, breaks out of the smallest enclosing for or while loop. The

continue statement, also borrowed from C, continues with the next iteration of the loop. The pass

statement does nothing. It can be used when a statement is required syntactically but the program

requires no action.

Here is an example of the use of a break statement and an else clause in a loop.

SCRIPTING LANGUAGES M.TECH. II YEAR I SEM (R18)

216

for n in range(2 , 10):

for x in range(2 , n):

if n x == 0:

print n, ’ equals ’ , x, ’*’ , n/x break else:

loop fell through without finding a factor print n, ’ is a prime number ’

The above code searches for prime numbers between 2 and 10, and produces the following output.

2 is a prime number 3 is a prime number 4 equals 2 * 2

is a prime number

equals 2 * 3

is a prime number

equals 2 * 4

equals 3 * 3

Lists:

As already mentioned, a list is a finite sequence of items, and one could use the range function to

create lists of integers. In Python, lists are not required to be homogeneous, i.e., the items could be

of different types. For example,

a = [2 , " Jack", 45 , " 23 W entw orth Ave"]

is a perfectly valid list consisting of two integers and two strings. One can refer to the entire list

using the identifier a or to the i-th item in the list using a[i].

>>> a = [2 , " Jack", 45 , " 23 W entw orth Ave"]

>>> a

SCRIPTING LANGUAGES M.TECH. II YEAR I SEM (R18)

217

[2 , ’ Jack’ , 45 , ’ 23 W entw orth Ave’]

>>> a[0] 2

>>> a[1]

’ Jack’

>>> a[2] 45

>>> a[3]

’ 23 W entw orth Ave’

Note that the numbering of list items always begins at 0 in Python. So the four items in the above

list are indexed by the numbers 0, 1, 2, 3.List items may be assigned a new value; this of course

changes the list. For example, with a as above:

>>> a

[2 , ’ Jack’ , 45 , ’ 23 W entw orth Ave’]

>>> a[0] = 2002

>>> a

[2002 , ’ Jack’ , 45 , ’ 23 W entw orth Ave’]

Of course, the entire list may be assigned a new value, which does not have to be a list. When this

happens, the previous value is lost:

>>> a

[2002 , ’ Jack’ , 45 , ’ 23 W entw orth Ave’]

>>> a = ’ gobbletygook’

>>> a

’ gobbletygook’

SCRIPTING LANGUAGES M.TECH. II YEAR I SEM (R18)

218

Length of a list; empty list

Every list has a length, the number of items in the list, obtained using the len function:

>>> x = [9 , 4 , 900 , -45]

>>> len(x) 4

Of special importance is the empty list of length 0. This is created as follows:

>>> x = []

>>> len(x) 0

Sublists (slicing)

Sublists are obtained by slicing, which works analogously to the range function discussed before.

If x is an existing list, then x[start:end] is the sub list consisting of all items in the

original list at index positions i such that

start ≤ i < end.

Of course, we must remember that indexing items always starts at 0 in Python. For example,

>>> x= range(0 ,20 ,2)

>>> x

[0 , 2 , 4 , 6 , 8 , 10 , 12 , 14 , 16 , 18]

>>> x[2:5]

[4 , 6 , 8]

>>> x[0:5]

[0 , 2 , 4 , 6 , 8]

When taking a slice, either parameter start or end may be omitted: if start is omitted then the slice

consists of all items up to, but not including, the one at index position end, similarly, if end is

SCRIPTING LANGUAGES M.TECH. II YEAR I SEM (R18)

219

omitted the slice consists of all items starting with the one at position start. For instance, with the

list x as defined above we have

>>> x[:5]

[0 , 2 , 4 , 6 , 8]

>>> x[2:]

[4 , 6 , 8 , 10 , 12 , 14 , 16 , 18]

In this case, x[:5] is equivalent to x[0:5] and x[2:] is equivalent to x[2:len(x)].

There is an optional third parameter in a slice, which if present represents an increment, just as in

the range function. For example,

>>> list = range (20)

>>> list

[0 , 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11 , 12 , 13 , 14 , 15 , 16 , 17]

>>> list [0 :16 :2]

[0 , 2 , 4 , 6 , 8 , 10 , 12 , 14]

>>> list [0 :15 :2]

[0 , 2 , 4 , 6 , 8 , 10 , 12 , 14]

Notice that one may cleverly use a negative increment to effectively reverse a list, as in

>>> list[18::-1]

[17 , 16 , 15 , 14 , 13 , 12 , 11 , 10 , 9 , 8 , 7 , 6 , 5 , 4 , 3 , 2 , 1 , 0]

In general, the slice x[len(x)::-1] reverses any existing list x. Joining two lists Two existing lists

may be concatenated together to make a longer list, using the + operator

>>> [2 ,3 ,6 ,10] + [4 ,0 ,0 ,5 ,0]

SCRIPTING LANGUAGES M.TECH. II YEAR I SEM (R18)

220

[2 , 3 , 6 , 10 , 4 , 0 , 0 , 5 , 0]

List methods

If x is the name of an existing list, we can append an item to the end of the list using x. append(

item)

For example,

>>> x = [3 , 6 , 8 , 9]

>>> x. append (999)

>>> x

[3 , 6 , 8 , 9 , 999]

A similar method is called insert, which allows an element to be inserted in the list at a specified

position:

>>> x = [’ a’ , ’ c’ , ’ 3 ’ , ’ d’ , ’ 7 ’]

>>> x. insert (0 ,100)

>>> x

[100 , ’ a’ , ’ c’ , ’ 3 ’ , ’ d’ , ’ 7 ’]

>>> x. insert(3 ,’ junk’)

>>> x

[100 , ’ a’ , ’ c’ , ’ junk’ , ’ 3 ’ , ’ d’ , ’ 7 ’]

One can also delete the first occurrence of some item in the list (if possible) using remove

as follows:

>>> x. remove(’ a’)

>>> x

SCRIPTING LANGUAGES M.TECH. II YEAR I SEM (R18)

221

[100 , ’ c’ , ’ junk’ , ’ 3 ’ , ’ d’ , ’ 7 ’]

To delete the item at index position i use x.pop(i), as in:

>>> x. pop(0) 100

>>> x

[’ c’ , ’ junk’ , ’ 3 ’ , ’ d’ , ’ 7 ’]

Notice that pop not only changes the list, but it also returns the item that was deleted. Also, by

default x.pop() pops off the last item:

>>> x. pop() ’ 7 ’

>>> x

[’ c’ , ’ junk’ , ’ 3 ’ , ’ d’]

Many more methods exist for manipulating lists; consult the Python Tutorial [1] or Python Library

Reference [2] for more details.

Strings

A string in Python is a sequence of characters. In some sense strings are similar to lists, however,

there are important differences. One major difference is that Python strings are immutable, mean-

ing that we are not allowed to change individual parts of them as we could for a list. So if x is an

existing string, then x[i] gets the character at position i, but we are not allowed to reassign that

character, as in x[5] = ’s’.

>>> x = ’ gobbletygook’

>>> x[2]

’ b’

>>> x[5]

’ e’

SCRIPTING LANGUAGES M.TECH. II YEAR I SEM (R18)

222

>>> x[5] = ’ s’

Traceback (most recent call last): File "< stdin >", line 1 , in < module >

TypeError: ’ str’ object does not support item assignment Just as for lists, string items are indexed

starting at 0. Slicing for strings works exactly the same as for lists. The length function len is the

same as for lists, and concatenation is the same too. But the list methods append, insert, delete, and

pop are not available for strings, because strings are immutable. If you need to change an existing

string, you must make a new, changed, one. There are many string methods for manipulating

strings, documented in the Python Library Reference Manual [2]. For example, you

can capitalize an existing string x using x.capitalize(); this returns a new copy of the string in which

the first character has been capitalized.

>>> a = ’ gobbletygook is refreshing’

>>> a. capitalize()

’ G obbletygook is refreshing’

Other useful methods are find and index, which are used to find the first occurrence of a substring

in a given string. See the manuals for details.

SCRIPTING LANGUAGES M.TECH. II YEAR I SEM (R18)

223

SCRIPTING LANGUAGES M.TECH. II YEAR I SEM (R18)

224

SCRIPTING LANGUAGES M.TECH. II YEAR I SEM (R18)

225

SCRIPTING LANGUAGES M.TECH. II YEAR I SEM (R18)

226

SCRIPTING LANGUAGES M.TECH. II YEAR I SEM (R18)

227

SCRIPTING LANGUAGES M.TECH. II YEAR I SEM (R18)

228

SCRIPTING LANGUAGES M.TECH. II YEAR I SEM (R18)

229

SCRIPTING LANGUAGES M.TECH. II YEAR I SEM (R18)

230

SCRIPTING LANGUAGES M.TECH. II YEAR I SEM (R18)

231

SCRIPTING LANGUAGES M.TECH. II YEAR I SEM (R18)

232

SCRIPTING LANGUAGES M.TECH. II YEAR I SEM (R18)

233

SCRIPTING LANGUAGES M.TECH. II YEAR I SEM (R18)

234

SCRIPTING LANGUAGES M.TECH. II YEAR I SEM (R18)

235

SCRIPTING LANGUAGES M.TECH. II YEAR I SEM (R18)

236

SCRIPTING LANGUAGES M.TECH. II YEAR I SEM (R18)

237

SCRIPTING LANGUAGES M.TECH. II YEAR I SEM (R18)

238

SCRIPTING LANGUAGES M.TECH. II YEAR I SEM (R18)

239

SCRIPTING LANGUAGES M.TECH. II YEAR I SEM (R18)

240

SCRIPTING LANGUAGES M.TECH. II YEAR I SEM (R18)

241

SCRIPTING LANGUAGES M.TECH. II YEAR I SEM (R18)

242

SCRIPTING LANGUAGES M.TECH. II YEAR I SEM (R18)

243

SCRIPTING LANGUAGES M.TECH. II YEAR I SEM (R18)

244

SCRIPTING LANGUAGES M.TECH. II YEAR I SEM (R18)

245

SCRIPTING LANGUAGES M.TECH. II YEAR I SEM (R18)

246

SCRIPTING LANGUAGES M.TECH. II YEAR I SEM (R18)

247

SCRIPTING LANGUAGES M.TECH. II YEAR I SEM (R18)

248

SCRIPTING LANGUAGES M.TECH. II YEAR I SEM (R18)

249

SCRIPTING LANGUAGES M.TECH. II YEAR I SEM (R18)

250

SCRIPTING LANGUAGES M.TECH. II YEAR I SEM (R18)

251

SCRIPTING LANGUAGES M.TECH. II YEAR I SEM (R18)

252

	Scripts and programs
	Origin of scripting
	SCRIPTING TODAY
	Characteristics of scripting languages
	Users for Scripting Languages
	Applications of traditional scripting languages are:
	Web scripting
	Processing Web forms
	Dynamic Web pages
	Dynamically generated HTML
	The universe of scripting languages
	Strings and numbers
	Boolean values
	Numeric constants
	String constants
	Variables and assignment Assignment
	<STDIN> - a special value
	Scalar Expressions
	Arithmetic operators
	String Operators
	1. Auto increment
	2. Unaryminus
	Comparison operators
	Logical operators
	Bitwise operators
	Conditional expressions
	Control structures
	BLOCKS
	Conditions
	CONDITIONAL EXECUTION
	Alternatives to if-then-else
	Statement qualifiers
	REPETITION:
	TESTING LOOPS
	Counting Loops
	ARRAYS
	HASHES
	Array Creation
	Accessing Array Elements
	Manipulating Lists
	Iterating over Lists
	Working With Hashes
	Creating Hashes
	Manipulating Hashes
	Strings, Pattern Matching & Regular Expressions in Perl
	String concatenation
	Substring extraction
	Substring search
	Regular expression
	Pattern matching
	Pattern substitution
	Modifiers to pattern matching and substitution
	Perl- Subroutines
	Define and Call a Subroutine
	Passing Arguments to a Subroutine
	Passing Lists to Subroutines
	Passing Hashes to Subroutines
	Returning Value from a Subroutine
	Finer Points Of Looping
	Loop Control Statements
	Infinite Loop
	Pack and Unpack
	Syntax
	Unpack Function
	Syntax (1)
	Sysopen Function
	Close Function To close a filehandle, and therefore disassociate the filehandle from the corresponding file, you use the close function. This flushes the filehandle's buffers and closes the system's file descriptor.
	getc Function

	Data Structures
	COMPLEX DATA STRUCTURES:
	Packages
	Modules
	Objects
	Constructors
	Instances
	Method Invocation
	Attributes
	Class Methods And Attributes
	Inheritance
	Creating Internet Ware Applications

	UNIT-2
	PHP Features
	Practicality
	Power
	Possibility
	Price
	ASP Style
	PHP’s Supported Data Types
	Boolean
	Integer
	Float
	String
	Compound Data Types
	Array
	Object
	Identifiers
	Variables
	Variable Declaration
	Value Assignment
	Reference Assignment
	Variable Scope
	Local Variables
	Function Parameters
	Global Variables
	Static Variables
	PHP’s Super global Variables
	Variable Variables
	Expressions
	Operands
	Heredoc
	TCL Structure
	Syntax
	Rules of TCL
	Variables and Data in TCL
	Switch command
	Data Structures
	Examples
	Example
	Example (1)
	The gets command The gets command reads the next line from the channel, returns everything in the line up to (but not including) the end-of-line character.
	The pwd and cd commands
	The glob command Tcl has a glob command which returns the names of the files that match a pattern.
	Procedures A procedure is a code block containing a series of commands. Procedures are called functions in many programming languages. It is a good programming practice for procedures to do only one specific task. Procedures bring modularity to pro...
	Implicit arguments
	Returning multiple values
	Recursion
	Scope : A variable declared inside a procedure has a procedure scope. The scope of a name is the region of a program text within which it is possible to refer to the entity declared by the name without qualification of the name. A variable which is de...
	Strings patterns
	Files The file command manipulates file names and attributes. It has plenty of options. #!/usr/bin/tclsh
	Eval One difference between Tcl and most other compilers is that Tcl will allow an executing program to create new commands and execute them while running. A tcl command is defined as a list of strings in which the first string is a command or proc....
	Example (2)
	Tcl/Tk substitution rules
	Tk canvas

